
Towards Using Source Code Repositories to Identify Software
Supply Chain Attacks

Duc-Ly Vu
ducly.vu@unitn.it

University of Trento, IT

Ivan Pashchenko
ivan.pashchenko@unitn.it
University of Trento, IT

Fabio Massacci
fabio.massacci@unitn.it
University of Trento, IT

Henrik Plate
henrik.plate@sap.com

SAP Security Research, FR

Antonino Sabetta
antonino.sabetta@sap.com
SAP Security Research, FR

ABSTRACT
Increasing popularity of third-party package repositories, like
NPM, PyPI, or RubyGems, makes them an attractive target
for software supply chain attacks. By injecting malicious code
into legitimate packages, attackers were known to gain more
than 100 000 downloads of compromised packages. Current
approaches for identifying malicious payloads are resource
demanding. Therefore, they might not be applicable for the
on-the-fly detection of suspicious artifacts being uploaded to
the package repository. In this respect, we propose to use
source code repositories (e.g., those in Github) for detecting
injections into the distributed artifacts of a package. Our pre-
liminary evaluation demonstrates that the proposed approach
captures known attacks when malicious code was injected
into PyPI packages. The analysis of the 2666 software ar-
tifacts (from all versions of the top ten most downloaded
Python packages in PyPI) suggests that the technique is
suitable for lightweight analysis of real-world packages.

KEYWORDS
Software Supply Chain Attacks; Lightweight Analysis; Code
injection; package repositories; source code repositories
ACM Reference Format:
Duc-Ly Vu, Ivan Pashchenko, Fabio Massacci, Henrik Plate, and An-
tonino Sabetta. 2020. Towards Using Source Code Repositories to
Identify Software Supply Chain Attacks. In Submitted to Conf. on
Comp. and Comm. Sec. - CCS’20 . ACM, New York, NY, USA,
3 pages. https://doi.org/tbc

1 INTRODUCTION
Software supply chain attacks occur when an attacker hijacks
the complex software development chain to insert malicious
code [3]. Among the attack vectors, attackers primarily target

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
CCS’20, 5 May 2020, For Review Purpose Only
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/tbc

language based ecosystems such as NPM for Javascript or
PyPI for Python by either stealing package owner credentials
to subvert the package releases (e.g., attack on ssh-decorate
package1) or publishing their own packages with names simi-
lar to popular ones (i.e., combosquatting and typosquatting
attacks on PyPI packages [11]). The examples of the supply
chain attacks were discovered several years ago. Since then,
the number of cases has been steadily increasing [3, Figure 1].

Given the popularity of packages coming from language
based ecosystems, the number of victims affected by software
supply chain attacks is significant. For example, in July 2019,
three malicious Ruby packages discovered by MalOSS [1]
exceeded 100 000 downloads and were assigned the official
CVEs. In February 2020, two accounts uploaded over 700 ty-
posquatting malicious packages to the RubyGems repository
and achieved more than 100 000 overall downloads [6].

The situation becomes even more dramatic as the ongo-
ing and successful attacks have passed unnoticed: 20% of
the malicious packages persisted in the NPM, PyPI, and
RubyGems ecosystems for over 400 days [1]. This problem
likely happens due to the lack of an efficient mechanism
for checking malicious code injections in FOSS packages up-
loaded to the package repositories at a high pace (400 and 100
new packages are uploaded to npm and PyPI, respectively
every day [10]). Current malware detection techniques in
language based ecosystems, on the other hand, are resource
demanding [1], require prior knowledge of previously benign
releases [8], or unable to process packages that have a limited
number of published releases [2].

Our approach is motivated by an intuition behind the
reproducible builds2: it is suspicious if the code in the source
code repository differs from the code in the artifacts distributed
in the package repository. In this respect, we propose an
approach to detect code injected into software packages by
comparing their distributed artifacts (e.g., those in PyPI)
with the source code repository (e.g., those in Github). The
proposed approach can be used to detect injected code in
typosquatting and hijacked packages.

To illustrate our approach, consider a typosquatting Python
package jeIlyfish discovered by Lutoma [5], which was
persistent in PyPI for nearly a year until its detection on

1https://www.bleepingcomputer.com/news/security/backdoored-
python-library-caught-stealing-ssh-credentials/
2https://reproducible-builds.org

https://doi.org/tbc
https://doi.org/tbc
https://www.bleepingcomputer.com/news/security/backdoored-python-library-caught-stealing-ssh-credentials/
https://www.bleepingcomputer.com/news/security/backdoored-python-library-caught-stealing-ssh-credentials/
https://reproducible-builds.org

CCS’20, 5 May 2020, For Review Purpose Only Duc-Ly Vu, Ivan Pashchenko, Fabio Massacci, Henrik Plate, and Antonino Sabetta

December 1, 2019. jeIlyfish mimicked the popular pack-
age jellyfish3 (the first L is an I) to steal SSH and GPG
keys4. Our technique processes the suspected jeIlyfish ar-
tifacts to identify the corresponding source code repository5.
Then we compare the file hashes and contents extracted
from the artifacts with those obtained from the source code
repository. Our tool detects two injected files: setup.py, and
_jellyfish.py and reports several lines in _jellyfish.py
to contain suspicious API calls for decoding and executing
the malicious code.

Overall, our tool requires 12 seconds (on a laptop with
4 CPU cores and 8 GB RAM) for processing the source
code repository of the package jellyfish consisting of 364
commits, 530 individual files, and 28104 unique lines of code.
The tool takes only 0.04 seconds for scanning the suspected
artifact. Hence, our approach is fast to be integrated into
the package distribution pipeline for detecting suspicious
injections introduced by packages being uploaded to the
package repositories.

2 BACKGROUND
Several studies (e.g., [10, 11]) based on the edit distance (e.g.,
Levenshtein distance) between package names to flag suspi-
cious packages. Although the approaches are fast, manual
analysis of the several generated candidates confirmed that
the packages are benign [11] and exist due to coincidence,
because they have similar functionality or one package was
derived from the other (e.g., a fork) for legitimate reasons [10].

Taylor et al. [9] used six package name patterns (e.g.,
repeated characters) and the number of package downloads to
identify typosquatting candidates of a given package in PyPI.
Although this approach provides early warnings about a
potential typosquatting package, the lack of essential features
(e.g., source code similarity of suspected packages) might
cause the approach to generate a high number of false alerts.

Duan et al. [1] proposed MalOSS, an extensible framework
for detecting malicious packages in language based ecosys-
tems. The framework combines metadata, static, and dynamic
analysis to extract various features of packages. Although
MalOSS can effectively detect malicious packages, the pro-
posed system is computationally expensive, and only process
packages of a specific environment (e.g., Linux Ubuntu).

Garrett et al. [2] proposed an anomaly detection based
approach using features extracted from packages’ metadata
and source code to detect suspicious updates. Although the
proposed technique can effectively label the known malicious
updates, and reduce the review effort by 89 percent, only
31% of the packages in their dataset, which are frequently
updated and have at least two versions, can be processed.

Ohm et al. [8] proposed Buildwatch, a framework for dy-
namic analysis of software and its third-party dependencies.
The authors observed a high number of activities related to

3https://pypi.org/project/jellyfish/
4https://www.zdnet.com/article/two-malicious-python-libraries-
removed-from-pypi/
5in this case, it was the same as the mimicked package jellyfish
https://github.com/jamesturk/jellyfish

files (e.g., files written operations) in malicous verisons com-
pared to the benign versions that were previously released
of the analyzed packages. Although the approach provides
insight into malware behaviors, it requires knowing of previ-
ously published benign releases that are difficult to obtain [1].

In summary, current approaches are limited to checking
package names for providing early warnings for squatting
attacks and are prone to false alerts. On the other hand, the
malicious code detection techniques are resource demanding
and might not be approach might not be suitable for real-time
processing of packages uploaded to the package repositories.

3 IDENTIFICATION OF CODE
INJECTIONS

Our approach compares distributed artifacts in package repos-
itories (e.g., PyPI) and the source code repository (e.g.,
Github) to detect the injected code by the following steps:

(1) For each package, we identify the source code repository
by mining metadata properties (e.g., homepage)

(2) We clone the repository and extract all the commits.
For each commit, we check out each involved file, cal-
culate the file hash, and collect the file content. The
file hashes and contents are stored into a database

(3) We download each artifact of the package from the
package repository, decompress it into files. For each
file, we calculate the hash and collect the file content.

(4) Then we compare the file hashes and contents from step
(3) with those extracted from step (4). This comparison
results in files (and their lines) whose hashes are not
recorded (differ from) in the source code repository

(5) For the unknown lines, we check the presence of API
calls (e.g., urlopen) and imports (e.g., import os) using
a regular expression.

During the packaging process, the packaging tools (e.g.,
setuptools6 in Python) create new (benign) metadata files
(e.g., METADATA, WHEEL), these files are specified in PEP 4277.
Hence, we exclude such files from our analysis and focus on
the differences in code files (e.g., .py, .js, .rb).

4 PRELIMINARY FINDINGS
We evaluate the proposed approach on the two datasets of
known malicious and top ten most downloaded packages.

Known malicious examples. We used the malware dataset
collected by Ohm et al. [7]. The dataset contains 34 malicious
artifacts of 23 packages that were collected for both real
and research purpose attacks between November 2015 and
November 2019. Several packages have multiple distributed
artifacts (e.g., python3-dateutil has ten malicious versions).
Findings: All the 34 malicious artifacts contained lines of
code that were not present in the source code repositories;
some of these lines are suspicious API calls or library imports.
More specifically, we observed the following patterns:

6https://pypi.org/project/setuptools/
7https://www.python.org/dev/peps/pep-0427/

https://pypi.org/project/jellyfish/
https://www.zdnet.com/article/two-malicious-python-libraries-removed-from-pypi/
https://www.zdnet.com/article/two-malicious-python-libraries-removed-from-pypi/
https://github.com/jamesturk/jellyfish
https://pypi.org/project/setuptools/
https://www.python.org/dev/peps/pep-0427/

Towards Using Source Code Repositories to Identify Software Supply Chain Attacks CCS’20, 5 May 2020, For Review Purpose Only

• setup.py files are the most common file being injected;
22 artifacts whose the malicious code in this file;

• attackers can insert malicious code into different files in
a distributed artifact of a package: one artifact injects
code into the __init__.py file, three artifacts inject
code into the functional modules (e.g., _common.py
of python3-dateutil). While the median number of
different files is 2, attackers can build a new malicious
package (e.g., 20 new files in openvc-1.0.0);

• among the most common imported libraries, we noticed
such libraries as urllib3 (591 occurrences), socket (13
occurrences), base64 (12 occurrences). These imports
suggest that malicious imports focus on opening URLs,
establishing connections, and encoding/decoding data.

The top ten most downloaded packages in PyPI. We ob-
tained the top most downloaded PyPI packages8 from the
Kemenade database [4] released in August 2020. The packages
contain 2666 distributed artifacts across all releases.
Findings: We observed that 2587 artifacts (97%) feature no
difference from their source code repository. We explained
the identified differences as follows:

• backporting security fixes: e.g., developers introduced
a fix for CVE-2019-9740 into urllib3-1.24.3;

• fixing of configuration issues: some urllib3 artifacts
contain fixes for https proxy issue9, several six artifacts
include compatibility fixes, and some chardet artifacts
have changes to fix encoding bugs, and certifi-0.0.6
accommodates version declaration fixes;

• testing of features: e.g., 11 lines of code injected into re-
lease requests-0.6.2 to show odd behavior of urllib3
PoolManager. Similarly, several six artifacts featured
changes in test files.

The median time to process an individual package artifact
does not exceed 0.04 seconds. Processing the source code
repositories (steps 1-2 in Section 3) takes 33 seconds median
execution time (maximum 464 seconds (~8 min)). Hence,
the approach is applicable for real-time checking software
artifacts being uploaded to the package repository.

5 AUTOMATIC CLASSIFICATION OF
MALICIOUS CHANGES

Although our current implementation detects the injections
in distributed artifacts of a package, manual effort is still
required to understand the injections’ intention. Thus, we
plan to develop an automated classifier for distinguishing
malicious and benign code injections for future research.

File-level analysis. We could extract various features from
detected files (e.g., # new files, # modified files) to distinguish
benign and malicious artifacts. For example, suppose an
artifact has all files different (newly added) with respect
to its source code repository. In that case, the artifact is

8Top ten packages: urllib3, six, botocore, requests, python-dateutil,
certifi, s3transfer, idna, chardet, pip. We skip docutils because it
is hosted in sourceforge.
9https://github.com/urllib3/urllib3/issues/1850

likely crafted from scratch with different malicious or benign
functionality.

Code-level analysis. We could leverage code features (e.g.,
those proposed by [1, 2]), for detecting malicious injections

(1) presence of APIs that connect a remote URL, down-
load/send content, decode or execute a code fragment;

(2) presence of imports of additional libraries to support
malicious activities indicated in the previous item.

6 CONCLUSIONS
In this paper, we propose a lightweight technique based on
the comparison between distributed artifacts and the source
code repository of a package to detect the presence of in-
jected code in software packages. Our results show that the
proposed approach captures the known malicious packages,
and reduces the review effort for distributed software releases
by 97 percent. The median time for processing an individual
artifact is less than a second, and 33 seconds for processing
source code, which are fast. Hence, the approach is capable of
the on-the-fly detection for injection attacks for packages be-
ing uploaded to the package repositories. For future work, we
plan to build a classifier to discriminate benign and malicious
injections using features from injected files and codes.

ACKNOWLEDGMENTS
This research has been partly funded by the EU under the
H2020 Programs H2020-EU.2.1.1-CyberSec4Europe (Grant
No. 830929), NeCS: European Network for Cyber Security
(Grant No. 675320) and SPARTA project (Grant No. 830892).

REFERENCES
[1] R. Duan, O. Alrawi, R.P. Kasturi, R. Elder, B. Saltaformaggio,

and W. Lee. 2020. Measuring and preventing supply chain attacks
on package managers. arXiv (2020).

[2] K Garrett, G. Ferreira, L. Jia, J. Sunshine, and C. Kästner.
2019. Detecting suspicious package updates. In Proc. of ICSE-
NIER’19.

[3] T. Herr, J. Lee, W. Loomis, and S. Scott. 2020. Breaking
Trust: Shades of Crisis Across an Insecure Software Supply
Chain. https://www.atlanticcouncil.org/in-depth-research-
reports/report/breaking-trust-shades-of-crisis-across-an-
insecure-software-supply-chain/.

[4] H.V. Kemenade. 2020. hugovk/top-pypi-packages: Release
2020.08. https://doi.org/10.5281/zenodo.3969444

[5] Lutoma. 2019. PSA: There is a fake version of this package on
PyPI with malicious code. https://github.com/dateutil/dateutil/
issues/984.

[6] Tomislav Maljic. 2020. Mining for malicious Ruby gems Ty-
posquatting barrage on RubyGem software repository users. https:
//blog.reversinglabs.com/blog/mining-for-malicious-ruby-gems.

[7] M. Ohm, H. Plate, A. Sykosch, and M. Meier. 2020. Backstabber’s
Knife Collection: A Review of Open Source Software Supply Chain
Attacks. In Proc. of DIMVA’20.

[8] M. Ohm, A. Sykosch, and M. Meier. 2020. Towards detection of
software supply chain attacks by forensic artifacts. In Proc. of
ARES’2020.

[9] M. Taylor, R.K. Vaidya, D. Davidson, L. D. Carli, and V. Rastogi.
2020. SpellBound: Defending Against Package Typosquatting.
arXiv (2020).

[10] R.K. Vaidya, L. D. Carli, D. Davidson, and V. Rastogi. 2019.
Security issues in language-based sofware ecosystems. arXiv
(2019).

[11] D.L. Vu, I. Pashchenko, F. Massacci, H. Plate, and A. Sabetta.
2020. Typosquatting and Combosquatting Attacks on the Python
Ecosystem. In Proc. of EuroS&PW’20.

https://github.com/urllib3/urllib3/issues/1850
https://www.atlanticcouncil.org/in-depth-research-reports/report/breaking-trust-shades-of-crisis-across-an-insecure-software-supply-chain/
https://www.atlanticcouncil.org/in-depth-research-reports/report/breaking-trust-shades-of-crisis-across-an-insecure-software-supply-chain/
https://www.atlanticcouncil.org/in-depth-research-reports/report/breaking-trust-shades-of-crisis-across-an-insecure-software-supply-chain/
https://doi.org/10.5281/zenodo.3969444
https://github.com/dateutil/dateutil/issues/984
https://github.com/dateutil/dateutil/issues/984
https://blog.reversinglabs.com/blog/mining-for-malicious-ruby-gems
https://blog.reversinglabs.com/blog/mining-for-malicious-ruby-gems

	Abstract
	1 Introduction
	2 Background
	3 Identification of code injections
	4 Preliminary Findings
	5 Automatic classification of malicious changes
	6 Conclusions
	References

