
LastPyMile: Identifying the Discrepancy between Sources and
Packages

Duc-Ly Vu
ducly.vu@unitn.it
University of Trento

Italy

Fabio Massacci
fabio.massacci@ieee.org
University of Trento

Italy
Vrije Universiteit Amsterdam

Netherlands

Ivan Pashchenko
ivan.pashchenko@unitn.it

University of Trento
Italy

Henrik Plate
henrik.plate@sap.com
SAP Security Research

France

Antonino Sabetta
antonino.sabetta@sap.com
SAP Security Research

France

ABSTRACT

Open source packages have source code available on repositories for

inspection (e.g. on GitHub) but developers use pre-built packages

directly from the package repositories (such as npm for JavaScript,

PyPI for Python, or RubyGems for Ruby).

Such convenient practice assumes that there are no discrepancies

between source code and packages. These differences pose both

operational risks (e.g. making dependent projects unable to compile)

and security risks (e.g. deploying malicious code during package

installation) in the software supply chain.

Our empirical assessment of 2438 popular packages in PyPI with

an analysis of around 10M lines of code shows several differences

in the wild: modifications cannot be just attributed to malicious

injections. Yet, scanning again all and whole ‘most likely good but

modified’ packages is hard to manage for FOSS downstream users.

We propose a methodology, LastPyMile, for identifying the

differences between build artifacts of software packages and the

respective source code repository. We show how it can be used to

extend current package scanning practices for malware injection

(which only covers less than 1% of the code of deployed packages).

CCS CONCEPTS

· Software and its engineering→ Software configurationman-

agement and version control systems; · Security and privacy

→ Software security engineering;

KEYWORDS

Open source software, software supply chain, Python, PyPI

ACM Reference Format:

Duc-Ly Vu, Fabio Massacci, Ivan Pashchenko, Henrik Plate, and Antonino

Sabetta. 2021. LastPyMile: Identifying the Discrepancy between Sources

and Packages. In Proceedings of the 29th ACM Joint European Software

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8562-6/21/08.
https://doi.org/10.1145/3468264.3468592

Engineering Conference and Symposium on the Foundations of Software

Engineering (ESEC/FSE ’21), August 23–28, 2021, Athens, Greece. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3468264.3468592

1 INTRODUCTION

The expression software supply chain refers to łanything that goes

into or affects your code from development, through your CI/CD

pipeline, until it gets deployed into production” [22]. In the past

decade, Free and Open-Source Software (FOSS) has become an

integral part of the software supply chain: as much as 99% of code-

bases contain open-source code [43], and 85% [41] to 97% [47] of

enterprise codebases comes from open source.

One benefit of FOSS is that source code and additional metadata

is publicly available for audit, review, and even modification. Devel-

opers rely on this information (e.g., number of GitHub stars, number

of downloads from libraries.io) to decide whether to add a

FOSS project as a software dependency into their projects [25, 35].

Organizations with high security requirements, e.g., government

organizations or vendors of commercial enterprise software, com-

monly establish vetting processes to ensure the quality and security

of 3rd party software and services [9, 31]. In the case of FOSS, this

evaluation is performed mostly by manual reviews and automated

scans of the source code repository of each dependency [10].

In theory, once code is checked, developers could download

software dependencies as source files in tarballs, and build them

in-house. Yet, this process can be time-consuming and requires

knowledge of the build systems [21].

In practice, developers download pre-built packages from repos-

itories (such as npm for JavaScript, PyPI for Python, or RubyGems

for Ruby) under the comfortable assumption that no discrepancies

are introduced in the last mile between the source code and their re-

spective packages. Yet, such discrepancies might be introduced by

manual or automated build tools (e.g., metadata, Python bytecode

files) [18] or for evil purposes. For example, a backdoor was inserted

into the PyPI package ssh-decorate to collect the users’ SSH

credentials and exfiltrate them to a remote server [7].

Reproducible builds could be a solution. For it to be practical,

modifications need to be the exception rather than the norm. Un-

fortunately, the opposite is true on the field. Indeed, in the npm

780

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3468264.3468592
https://doi.org/10.1145/3468264.3468592


ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Duc-Ly Vu, Fabio Massacci, Ivan Pashchenko, Henrik Plate, and Antonino Sabetta

Start
releasing

Build, additional
code generation

(e.g. Swag-
ger, Codegen)

Release-ready
code

Upload to
package repo
(e.g. twine)

Generated Artifacts
Possibly:
- OS binaries
- Test Coverage log
- Documentation
- Automatic gener-
ated code Select files

for review

Generated Artifacts
in package repo
(PyPI)
Possibly:
- OS binaries
- Test Coverage log
- Documentation
- Automatic gener-
ated code

Automated check
for malware
(e.g. PyPI Mal-

ware Checks [52])

Selected files
(e.g., setup.py) Admin

Review
Verdicts

Leave artifact
published

B
en
ig
n

Remove
Artifact

Malicious

Development Build and Publication Security Review

Source code repo
(e.g. Github)

Build systems (CI Cloud services such as
Travis CI, developers’ workstation, etc.) Package repo (PyPI)

config info:
· CI credientials
· Source code
repo credentials

Package repo
credentials

Figure 1: Current Development, Build, Publication and Security Review pipeline of PyPI packages

ecosystem, packages are not easily reproducible from the source

code [18]. The same applies to the PyPI ecosystem (see Section 6).

In the absence of reproducible builds, a vetting process must be

extended to cover the risk of malicious code injection in the last mile.

Since applications have many direct and transitive dependencies,

and because every new version has to be verified, scalability and

integration with existing security review pipelines are key.

These requirements clash with the resources at hand for FOSS

repositories: less than ten PyPI administrators oversee 400 000 pack-

age owners. At the time of writing, for every new upload, PyPI’s

vetting pipeline only checks a script called setup.py for ma-

licious code that would execute upon package installation [52].

Although setup.py is commonly targeted by attackers, mali-

cious code is also injected other locations. Other approaches also

require a significant effort to reduce false positives [13] and to im-

prove the quality of hand-crafted signatures [32]. While suspicious

packages or updates might be flagged, too many false alerts are

generated for benign packages [29]. In 2020, the administrators had

to evaluate 1874 new updates per day, with an average of 3500 files

generated by more than 76 997 developers [6]. Thus, the cost of

even a single false positive in the evaluation must be multiplied by

those numbers.

A key observation is that in code injection attacks, only aminimal

part of the codebase is modified [49]. One could simply focus on

the last mile differences between the source code and the submitted

packages. Hence our first question:

• RQ1: Can we effectively and efficiently identify differences?

A basic solution already exists: git log. For each line in an ar-

tifact, we check whether it is (or at least was) in the repository at

some point. By iterating over all commits (revisions), we ensure

that we collect everything in the source code repository, and we

eliminate the need for identifying the pair of Git release/tag and

PyPI release to be compared. Unfortunately, that does not scale as

git log needs to loop over all revisions and spawns a heavy

git process each time it is invoked. We could also use diffing tech-

niques [2, 18], but they require a mapping of each PyPI release onto

the corresponding Git tag or release, which does always exist.

Our algorithm LastPyMile is a feasible alternative to this prob-

lem. By cleverly combining package scraping and artifact hashing,

we can extract these differences in a scalable way. Then, we can

analyze how big is the gap in the field:

• RQ2: How big are the ‘normal’ differences between source code

and package repositories?

We show that for more than 2000 popular packages in the PyPI

ecosystem, such differences are pervasive. If a package code differs

from the published source code, one cannot assume that it has been

maliciously modified. Differences are too many (65% of artifacts and

22% of files in our sample) and too diverse for reproducible builds to

be a solution. Yet, only few modifications happen in Python source

files (2.6% of files) so that vetting might be a feasible alternative.

Finally, we can try to determine whether this solution can make

a difference on the end goal: improving the vetting and coverage

of scanners while keeping the number of false alerts manageable

for PyPI maintainers given the imbalance ratio between the PyPI

maintainers and the number of packages [50].

• RQ3: Can LastPyMile be combined with package scanners

while keeping the number of alerts manageable by a human?

To be effective in the field, we should allow developers and devel-

opment organizations to use the same tools to scan the source code

repository of a package as part of their vetting process. Without

protecting their investments in licenses, workflows, and developer

education, an excellent technical solution would be doomed to fail.

We show that such an approach is possible with LastPyMile.

2 TERMINOLOGY

Source code are human-readable instructions that others could check

to understand the functionality of a software project.

Artifact is a software entity that contains all necessary items (e.g.,

files) to run the software and can be installed or directly used

by project consumers. Typically, they are produced by the build

process [24]. In Python, built distributions (e.g., Wheels) are

generated from the source distributions (e.g., tarballs).1

Package ‘exists to be installed (or deployed)’2, and is a collection of

pre-built and versioned artifacts for one or more target envi-

ronments that is made available to consumers as an entity.

Repository is a cloud provider with a versioning system to store

and access several versions of a software project. A source code

repository stores and maintains the project source code, and a

package repository distributes pre-built packages to consumers.

1https://packaging.python.org/glossary/#term-Source-Distribution-or-sdist
2https://packaging.python.org/overview/

781

https://packaging.python.org/glossary/#term-Source-Distribution-or-sdist
https://packaging.python.org/overview/


LastPyMile: Identifying the Discrepancy between Sources and Packages ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

An artifact present in a package available from a package repos-

itory is a published artifact.

Phantom is a software entity (e.g., files, lines of code) present in

an artifact but does not match the one submitted to the source

code repository. We use phantom lines to refer to lines of code

and phantom files to refer to entire files.

3 BACKGROUND

3.1 The Last Mile from Source to Package

Figure 1 shows a typical package process of releasing a Python

package in PyPI that consists of three main stages: development,

build and distribution, and security review.

The primary activities of the development stage mainly happen

at a source code repository (e.g., GitHub, GitLab, Bitbucket, etc.).

At this stage, developers write all the code of a project. Developers

may run various tools to test the functionality of the project and the

absence of security vulnerabilities. If a project is open-source, other

people could access the code, check it, and suggest improvements.

The source code repository is often an essential source of informa-

tion for the developers to decide the quality of a software [35].

When developers decide to make the software version available

for other people (i.e., make a release), they move the code to the

build stage. At this stage, automated tools such as Travis CI, Jenkins,

AppVeyor, or GitHub Actions use the information stored in the

project configuration files to build it. These tools fetch the source

code of the package and execute the build scripts that collect all

the necessary dependencies, add package metadata, generate code

(e.g., Swagger Codegen), and create artifacts that are ready to be

distributed, like source archives, Linux, or Windows binaries, test

coverage logs, and documentation.

At the publication stage, developers upload the artifacts to a

package repository (e.g., PyPI, npm,Maven Central) eithermanually

or automatically by using the build tool from the packaging stage.

Most consumers will actually use the version of the software stored

and published via package repositories. Uploaded artifacts need to

go through the security review stage of a package repository. In PyPI,

PyPI administrators run multiple checks (see Subsection 3.4) on

uploaded artifacts. The checks will generate a verdict if an uploaded

artifact contains suspicious behavior. The administrators are then

reviewing the verdicts to decide to keep the artifact.

The match between the source code version of a project and the

packages that correspond to that version is taken for granted [35].

However, several tools (and humans) are involved at different stages

of the pipeline, and some actions may result in a published artifact

containing code that is not present in the source code repository.

During the packaging stage, building tools add metadata files and

augment existing code files (e.g.,setup.py) with information [3],

such as license, timestamp3, release version, etc. Developers also

use tools such as Swagger Codegen that automatically generate

code files (e.g., server stubs and client SDKs for APIs). Developers

may also change the code of a published artifact directly to backport

a bug or a vulnerability fix [50].

Developers’ actions might create difficulties to connect the dis-

tributed artifacts and their source code repositories (Figure 2).

3https://github.com/pypa/wheel/issues/248

robotframework/Selenium2Library

(v3.0.0a2 ∼ v3.0.0)

robotframework/SeleniumLibrary

(v1.0.0 ∼ v5.0.0) \ v2.9.2

robotframework/OldSeleniumLibrary

v2.4 ∼ v2.9.2

robotframework-

seleniumlibrary v2.7 ∼ v5.0.0

robotframework-

selenium2library (v1.0.0 ∼ v3.0.0)

PyPI
1.0.0

PyPI
2.9.2

Github PyPI

When developers move stuff around repositories with different names the auto-
matic traceability between package and source code repositories becomes hard as
links in packages (solid lines) can point to the latest but possibly wrong source
repository. A human must read the docs to find the correct Github repository.

Figure 2: GitHub tags and PyPI releases of

SeleniumLibrary

Example 1. The PyPI page of package robotframework-

selenium2library points to the GitHub repository robotf-

ramework/SeleniumLibrary that contains the code for the

releases before v1 .8 .0 and after v3 .0 .0a1 . The code for other releases

is stored in a different GitHub repository robotframewo-

rk/Selenium2Library.

In this example, comparing a specific package version on PyPI

with the corresponding GitHub tag for the releases in between

v1 .8 .0 and v3 .0 .0a1 does not work as the corresponding code is

not present in the referenced source code repository. One could only

find the correct mapping between source and package repositories

by manually inspecting repository descriptions.

Summary: Differences between the source and package reposi-

tories may be due to ‘normal’ activities.

3.2 Software Supply Chain Attacks

Software supply chain attacks occur when malicious or vulnera-

bility is injected into differnt stages of the software development

chain [20, 26]. Ohm et al. studied several attacks on different ecosys-

tems [33] and found hijacking and typosquatting attacks to be

the most common. Compromising the package owner’s creden-

tials would allow attackers to inject malicious payloads into the

existing artifacts so that users will download and install them.

Some examples of attacks are the injection of backdoors into PyPI

ssh-decorate package [1], Ruby rest-client package,

or npm even-stream package [19]. Attackers can commit ma-

licious code into a source code repository [17, 37].

Package name *-squatting attacks are more prevalent than pack-

age hijacking [33]. In typo- and combosquatting attacks [33, 50]

adversaries inject a malicious payload into the code of a popular

package. Then they release this new package with a name nearly

identical to the name of the original package to trick package users

who mistype the package name and install the malicious one. This

attack becomes especially attractive considering the limited auto-

matic controls integrated into the package publishing process, and

the certain unbalance concerning the number of package users and

PyPI Administrators/Moderators (40K to 1) [53].4 Several attempts

4Data collected on Feb 2020 from https://pypi.org/

782

https://github.com/pypa/wheel/issues/248
https://pypi.org/


ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Duc-Ly Vu, Fabio Massacci, Ivan Pashchenko, Henrik Plate, and Antonino Sabetta

Table 1: Discrepancies in files of legitimate and malicious

typosquatting packages

Distrib shows the number of lines of code that are not present in the source code repository
for the requests and Flask legitimate packages as well as the difference between
the malicious packages request and urlib3 from the original legitimate source
code repositories of the benign packages (the targets) reported at [40]

Filename #Lines of code

Source +Distrib

requests-1.2.2/requests/models.py 687 +5

Flask-0.5.2/flask/templating.py 88 +2

urlib3-1.21.1/setup.py 174 +23

request-1.0.117/hmatch.py 27 +81

were made to identify the typo- and combosquatting packages

present in the package managers [4, 42, 45, 50].

Example 2. A typosquatting PyPI package urlib3 [40] imper-

sonated the popular package urllib3.5 urlib3 contains mali-

cious code to exfiltrate user information to a remote server. urlib3

has a single release urlib3-1.21.1.tar and the same Github

URL as urllib3.6

Table 1 shows the modified files in both legitmate packages:

requests and Flask and malicious packages request and

urlib3. Both kinds of packages differ from the source.

Summary: Discrepancies can also be due to malicious reasons.

Attackers can inject malicious code or restore vulnerable code

for later exploitation when a package is installed.

3.3 Reproducible Builds as an Ideal Solution

Reproducible builds [11] is a set of development practices that create

an independently verifiable path from source to published artifacts.

They could be the ideal solution to verify that no vulnerabilities or

backdoors have been introduced during the build process.

However, to achieve the reproducibility of the build process, we

must eliminate varying elements in release pipelines. For example,

builds should not include any CPU, timestamp, or locale information

in distributed artifacts [18]. Hence, reproducible builds require a

significant overhaul in the language-based package managers such

as PyPI or npm [3, 18] because current release pipelines augment

packages with more information, such as metadata, debug data, or

automatically generated code files (See Section 3.1).

Some free software distributions, such as Debian, have proce-

dures to identify the original source code and a difference file that

includes all changes made specifically for Debian, including all files

related to packaging [23]. However, after trying for seven years,

Debian states that łit is a stretch to say that Debian is reproducible”.7

Summary: Reproducible builds are challenging to achieve given

the diversity of packaging tools and current implementations of

the release pipeline (e.g., embedding timestamp into artifacts).

3.4 Current PyPI Packages Scanners

Table 2 summarizes the existing tools that support identifying

malicious code injections in Python packages. Several scanning

tools [5, 13] parse files into abstract syntax trees (AST) and perform

5https://pypi.org/project/urllib3/
6https://github.com/urllib3/urllib3
7https://wiki.debian.org/ReproducibleBuilds

Table 2: Existing tools for analyzing PyPI packages

Regex (Regular Expression) bases on the raw lines of code while AST (Abstract Syntax
Tree) requires transforming the code into a tree. The hybrid analysis consists of metadata,
AST, and dynamic execution of an artifact

Tool name Input Technique

Malware Checks [52] setup.py file Static (Regex)

MalOSS [13] Package Hybrid analysis

Application

Inspector [28]
Artifact Regex

OSSGadget [29] Package & Arti-

fact

Static (Regex)

Ohm et al. [32] Artifact Static (AST)

Bertu [5] setup.py file Static (AST)

rule-based searches on their nodes. ApplicationInspector [28] and

OSSGadget [29] use regular expressions to identify suspicious code

lines. However, the tool authors mention that their tools generate

many false positives if run on the entire package code [29]. This

high number of false positives is to be expected.

1 # Establishing a socket connection to a server
2 s = socket.socket(socket.AFINET, socket.

→֒ SOCKSTREAM)
3 rip = 'M' + 'TIxL' + 'jQyL' + 'jIx' + 'N' + 'y4'

→֒ + '0NA' + '=='
4 # Sending the encoded data via the socket
5 s.connect((base64.b64decode(rip), 017620))

Listing 1: Malicious code snippet opening of a socket to an

encoded network address.

1 # Decoding a bundle of certs in PEM format
2 dercerts = [
3 base64.b64decode(match.group(1)) for

→֒ match in PEMCERTSRE.finditer(pembundle)]

Listing 2: Legitimate b64decode call in the urllib3

package

Consider the code snippets from Listing 1 and Listing 2. Both

code snippets use b64decode function from base64 library.

Listing 1 is a malicious fragment that collects the user information

and sends it to a remote server via a network socket, while the

code in Listing 2 simply decodes a (benign) certificate. A package

checking tool that consider b64decode function as suspicious

since it is often used in malicious packages will produce a true

positive for Listing 1 and a false positive for Listing 2. Unfortunately

b64decode function is widely used for benign purposes, and the

tool will generate many false positive alerts as it has no way to

distinguish benign from malicious usage without further analysis.

To avoid being overwhelmed by false positives, the current

PyPI security review called Malware Checks [52] scans only the

installation script setup.py. Unfortunately, several known at-

tacks [27, 40] had malicious code injected into different files. Hence,

the review of only setup.py files is not enough.

Example 3. The typosquatting package jeIlyfish [27] mim-

icked the popular package jellyfish (the first L is an I) to steal

SSH and GPG keys [8]. There are two injected files: setup.py, and

jellyfish.py in the typosquatting package. The malicious code

is stored in the jellyfish.py as shown Listing 4 and then being

783

https://pypi.org/project/urllib3/
https://github.com/urllib3/urllib3
https://wiki.debian.org/ReproducibleBuilds


LastPyMile: Identifying the Discrepancy between Sources and Packages ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 3: Number of source code repositories found by loca-

tions

Metadata of a package contains multiple fields such as Homepage, Codepage. Package
Homepage is the main page which contains additional information about a package (e.g.,
documentation)

Location #GitHub Repos Percentage (%)

Homepage (Metadata) 2618 77.9

Codepage (Metadata) 68 2

Package Homepage 1418 42.2

PyPI Homepage 1974 58.7

Total GitHub Repos 3662 100

implicitly called by the package installer via the packages option

in the setup.py file (Listing 3).

1 # Process pure Python modules in 'jeIlyfish'
2 packages=['jeIlyfish']

Listing 3: The file jeIlyfish-0.7.1/setup.py

1 ZAUTHSS = PAYLOAD
2 # Decoding and executing the obfuscated payload
3 ZAUTHSS = base64.b64decode(ZAUTHSS)
4 ZAUTHSS = zlib.decompress(ZAUTHSS)
5 exec(ZAUTHSS)

Listing 4: The file jeIlyfish-0.7.1/jeIlyfish/ jellyfish.py

Summary: If scanning one file in a package is feasible but not

enough and reviewing an entire package is unfeasible due to the

high number of false positives, a different solution is needed.

4 RQ1: LASTPYMILE TO IDENTIFY CODE
INJECTION

The upper part of Figure 3 shows the typical process of the security

review process in package repositories (e.g., PyPI) for identify-

ing suspicious artifacts that might occur during the release of a

software project. First, the code in the published artifact is under-

going code review and scanning by the PyPI Administrators by

running security checks [52]. Currently, they are using two checks

SetupPatternCheck andPackageTurnoverCheck (see

Section 7).

Depending on the automated tool used by the maintainers, this

scanning could be done on the entire artifact for backdoor injection

(e.g., Bandit) or on its files (e.g., Malware Checks [52]). Then the

output of the scan is used to decide whether the artifact should be

uploaded to the package repository.

The bottom part of Figure 3 shows how LastPyMile can augment

the traditional security process. As a preliminary, LastPyMile looks

for the GitHub URLs of a PyPI package in various places, including

package metadata, PyPI, and package homepage. Table 3 shows the

number of GitHub URLs we found. Most of the packages declare

their GitHub repositories in the metadata available on PyPI.

In Step 1, LastPyMile iterate all commits to compute all file

hashes and collect line contents from a source code repository. To

ensure that all the files and lines are collected, LastPyMile pro-

cesses commits from all branches and tags in the GitHub repository.

LastPyMile supports processing the GitHub repository in parallel

so that multiple commits can be processed simultaneously. Besides,

Step 1 Hashing files and lines from source code repository

Require: The Github URL of the package: GithubURL

1: Set of file hashes in the repository Hs : []
2: Set of lines of files in the repository Ls : []
3: Cloned Dir = CloneRepositoryToDisk(GithubURL)
4: Commits = GetCommitsFromRepo(Cloned Dir)
5: for each c ∈ Commits do
6: Fs ← CheckoutFilesInCommit(c)
7: for each f ∈ Fs do

8: H ← H ∪ SHA256 (f )
9: L← L ∪ ReadFile(f )

10: return Set of file hashes, lines: Hs , Ls

Table 4: Running time comparison between LastPyMile and

git-log approaches

Both approaches had been run in the same environment. The differences obtained by both
the approaches are the same (e.g., number of phantom files and lines)

Package git log (seconds) LastPyMile (seconds)

certifi 1244 48

idna 408 34

six 315 145

s3transfer 1095 44

to avoid processing the same commits in different branches, Last-

PyMile maintains a shared set of already processed commits for

synchronizing the processing tasks.

Example 4. 18 distributed artifacts nameko-3.0.0.rcX contain the

source code that is stored in the v3.0.0-rc branch.

After collecting all the file hashes and lines from the Github

repository, in Step 2 LastPyMile processes a package artifact to

calculate file hashes and collect file lines. Finally, LastPyMile com-

pares file hashes and lines of distributed artifacts and those in the

source code repository to report the phantom files and lines (Step 3).

LastPyMiletakes only 0.04 seconds for scanning jellyfish

artifact that consists of 530 unique files and 28104 lines on a laptop

with four CPU cores and 8 GB RAM. Considering the top four

most downloaded packages six, idna, python-certifi

and s3transfer as shown in Table 4, LastPyMile is 16x faster

than the default iterative approach that relies on calling git log com-

mand for every line of an artifact because LastPyMile preproceses

all commits in a repository and require only a single pass over all

code, while git log must iterate over all revisions each time it is

invoked.

Table 5 compares the number of total files and lines present in

the analyzed files with the phantom files and lines reported by

LastPyMile. We observe that more than half of setup.py files

are phantom, while the number of phantom lines of code in the

setup.py files is six times smaller compared to the total number

of lines in setup.py files. Globally the number of phantom lines

of code is 16 times smaller. Table 6 shows that a median artifact

contains two phantom lines that include at least one API call (e.g.,

execute some function) and two lines that import some library.

784



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Duc-Ly Vu, Fabio Massacci, Ivan Pashchenko, Henrik Plate, and Antonino Sabetta

Get a
package

PyPI Select Files Malware
Checks

FOSS Alternative Bandit
ChecksGet an artifact

Comprehensive
Security Review

Identify source
code repo

Source code
review

Other
scanners

Output
Review

LastPyMile
Identify source

code repo

Get an artifact

Hash Files &
Collect Lines from
Repo (Step 1)

Hash Files &
Collect Lines from
Artifact (Step 2)

Identify phantom
files and lines (Step 3)

Filter Input Filter Output

Figure 3: LastPyMile in the context of the overall security review pipeline

Step 2 Hashing files and lines from an artifact

Require: A, the PyPI package artifact to be evaluated

1: Set of file hashes in an artifact Hp : []
2: Set of lines of files in an artifact Lp : []
3: Artifact URLs: As = ObtainArtifactURLs(p)
4: Local Artifact ← DownloadArtifactFromPyPI (A)
5: Fs ← UncompressArtifact(Local Artifact)
6: for each f ∈ Fs do

7: H ← H ∪ SHA256 (f )
8: Ls ← ReadLinesFromFile(f )
9: for each l ∈ Ls do

10: Lp ← L ∪ l

11: return Set of file hashes, lines: Hp , Lp

Step 3 Identifying phantom files and lines in distributed artifacts

Require: Hs ,Ls ,Hp ,Lp

1: Set of phantom files: Hd : []
2: Set of phantom lines: Ld : []
3: for each h ∈ Hp do

4: if h /∈ Hs then

5: Hd ← Hd ∪ h

6: for each l ∈ Lp do

7: if l /∈ Ls then

8: Ld ← Ld ∪ l

9: end if

10: end if

11: return Set of phantom files hashes, lines: Hd , Ld

Summary: LastPyMile enables checking the entire codebase of

a published artifact 16x faster than the git log approach as

LastPyMilerequires only a single pass over all commits.

5 DATA COLLECTION

To select the sample of Python packages for our study, we start

with the list of the top 4000 most downloaded packages [46], which

is the established approach to study the Python ecosystem, adopted

both in academia [6] and industry [30] and [12].

Table 5: Number of unique phantom files and lines versus

total

The columns in the left are the files and lines that are processed by the PyPI Malware

Checks and existing scanning tools while LastPyMile only processes the phantom files
and lines on the right. Phantom files are counted by their unique hashes

#Total #Different

setup.py All setup.py All

#Files 4056 90 143 2532 16 170

#Lines 38 750 14 027 895 7236 939 772

Table 6: Statistics about lines not in the repo

Mean Min Q25% Median Q75% Max

#APIs 4 1 1 2 3 946

#Imports 2 1 1 2 3 12

We identify 3662 packages (>91% of the selected Python pack-

ages) that use GitHub to maintain their source code. Among these

packages, 3336 are unique repositories (83%). For simplicity, here

we focus only on packages that claim their source code is on GitHub.

Table 7 shows the characteristics of the collected repositories. Three

repositories contain only two commits8, while several repositories

had tens of thousands of commits (e.g., pip has 10 730 commits9).

As we aimed to have a tool to be runnable łas you wait” [39],

we set a timeout period of five minutes for analyzing all artifacts

of a given package. As a result, the selected packages resulted in

109 062 artifacts. We had to exclude 15 810 artifacts (14%) belonging

to ‘surviving’ packages with early versions being developed on

versioning control systems other than Git and/or with the commit

history not being included when moving to GitHub. We could not

use them in our analysis as there was no source code to compare.

The final dataset comprises 93 252 artifacts from 2438 packages, 65%

of them are gzip, 29% are wheel, 4% are zip, and 2% are eggs.

After checking the differences between the number of differ-

ent files and code lines between source and package repositories

8For example, https://github.com/datamade/probableparsing
9At the time of data collection

785

https://github.com/datamade/probableparsing


LastPyMile: Identifying the Discrepancy between Sources and Packages ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 7: Descriptive statistics of GitHub repositories for the

selected packages

Tags includes Github tags and branches of a Github repository. Unique files and lines are
determined by their hashes and contents, respectively

Number of Mean Min Q25% Median Q75% Max

Tags 29 1 9 19 36 678

Commits 477 2 91 232 548 10 730

Unique files 97 3 14 29 68 17 000

Unique lines 53 1 6 17 43 8732

Table 8: Number of processed packages and artifacts

The processing time threshold is set for a package. We exclude artifacts that predate the
creation time of a Github repository

Step Result

Top-most downloaded packages 4000

Processed #artifacts (proc. time < 5 min) 109 062

Artifacts with corresponding tags in GitHub 15 810

Final #artifacts (linkable to source) 93 252

(Figure 4), we observed that 66 artifacts featured a huge number

of changes (>1000 different files). We manually analyzed those

artifacts and found that the explanation lies in ‘developers moving

stuff around’ across repositories, making it close to impossible to

identify source code repositories by automatic means. The example

in Figure 2 requires one to actually read the documentation.

Besides the robotframework-selenium2library in

Example 1, we found that sas7bdat package first hosted its

source code on GitHub but then was moved to BitBucket. The other

reason for not being able to locate the corresponding source code

of a package automatically is the usage of submodules [54] by

developers. We removed such artifacts from our analysis as their

source code could not be found automatically. Hence, the final list

of analyzed artifacts comprises 93 252 artifacts. Table 8 summarises

the number of analyzed packages and corresponding artifacts.

Example 5. The gsutil package refers to a GitHub repository

GoogleCloudPlatform/gsutil with two submodules. For

bothPyrogram-0.8.0-py3-none-any.whl and Pyro-

gram-1.0.3-py3-none-any.whl artifacts, we could not

find the related GitHub tag or release. Our manual analysis of these

packages did not reveal malicious injections.

6 RQ2: DIFFERENCES BETWEEN SOURCE
CODE AND PACKAGE REPOSITORIES

To answer RQ2, first, we compared the code distributed in PyPI

artifacts with the corresponding source code repositories. Figure 5

shows that 65% of artifacts and 22% of files present in PyPI have

changes with respect to the source code repository. I.e., they might

have malicious code injected during the package release process.

However, only 5.8% of artifacts and 2.6% of files have changes in

Python files, while 59% of artifacts and 19% of files have changes

in other files. These findings suggest that it might be promising to

limit the process checking for malicious injections to those artifacts

and files that have discrepancies, as the other artifacts cannot have

malicious injections during the release process. In this paper, we

Table 9: Differences between package artifacts and their

source code repositories

Unique files are the files having different hashes while number of lines are the total
number of lines in an artifact

#Files Mean Min Q25% Median Q75% Max

Number of Unique Files

Python 9 1 1 1 6 994

Metadata 4 1 3 4 5 19

Number of Lines

Python 19 2 2 4 12 1988

Metadata 8 2 6 8 10 38

focus on the changed Python files as they might be the target of

attackers for injecting executable malicious commands.

Metadata files have a great impact on the number of differences

between source code and package repositories: Table 9 shows that

a median artifact has four metadata files10 and nine Python files

(twice more). This difference is also visible at code line level: a

median artifact has 2-8 lines in phantom metadata files and 18 lines

in phantom Python files.

We observe that nearly 15% of Python files that have differences

with respect to the source code repository are init .py and

setup.py files (Table 10). Most likely, this happens since the

building tools introduce some additional information (e.g., times-

tamps, versions, etc.) into these files during the packaging process.

Similarly, the version.py and version.py files are used to

identify the package version from a Git tag or release automatically.

Table 11 shows the top ten regular and API calls related to

networking and system in the Python files that differ from the

source code repository. Many files have calls to such functions

as urlopen, socket.socket, request to open URLs and

make HTTP requests, subprocess.Popen and exec to open

files. Usage of these functions could be harmful. At the same time,

these functions are often used for legitimate operations, and one can-

not simply mark all lines that include a call to ‘possibly suspicious’

APIs as ‘actually suspicious’ – there would be an unmanageable

number of false alerts.
Summary: The code distributed via package repositories has

many changes with respect to the code stored in the correspond-

ing source code repository. On average there are 5.8% of artifacts

and 2.6% of files have changes in Python files.

7 RQ3: LASTPYMILE COMBINEDWITH
OTHER PACKAGE SCANNERS

The combination of LastPyMile with existing security scanners is

essential for two reasons: First, it allows to reuse mature detection

techniques of FOSS and commercial security scan tools. Second, by

doing so, developers and development organizations can use the

very same tools in different stages of the security review process,

which protects their investments into software licenses, the design

and implementation of review workflows, and developer education.

10We identified metadata files as generated by packaging tools (e.g., WHEEL), depen-
dency declaration files (e.g., requirements.txt), and documentation files (e.g.,
README.md)

786



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Duc-Ly Vu, Fabio Massacci, Ivan Pashchenko, Henrik Plate, and Antonino Sabetta

Outliers removed typically

a mismatch between de-

clared and actual versions

0 1000 2000 3000 6000

101

102

103

104

105

#Unique files

#A
rt
if
ac
ts

(a) #Files differing between source and package

0 1000 2000 30003000
101

102

103

104

105

#Unique lines

(b) #Lines differing between source and package

Figure 4: #Files and #lines differing between source and package repositories

Artifacts Files
0

20

40

60

80

100

P
er
ce
n
ta
g
e

Changes in Python files

Changes

No changes

Figure 5: Percentage of different kinds of changes in artifacts

and files

Table 10: Top different phantom Python files in our sample.

Phantom files are present in the package source code but have different content than the
omonimous file in the source code repository. The same file name might occur multiple
times in the same package with different paths. init.py and setup.py are the
most common phantom files.

Filename #Phantoms Percentage (%)

init .py 36 480 14.5

setup.py 7414 3

version.py 4152 1.7

version.py 3260 1.3

utils.py 2354 1

v1.py 1498 0.6

v2.py 1498 0.6

base.py 1404 0.6

client.py 1050 0.4

exceptions.py 1008 0.4

Table 11: Top ten API calls in modified Python files

API calls are grep from the line contents using a set of regular expressions. We exclude
some internal calls of the packages.

Top occurences Network & System occurences

init 72 413 urlopen 793

isinstance 55 115 socket.socket 711

datetime 37 393 subprocess.Popen 670

ttinfo 37 258 exec 580

len 36 325 request 541

read 31 582 http.request 511

getattr 21 575 s.setsockopt 413

super 16 760 requests.post 323

hasattr 16 358 request.get 317

join 13 869 os.chmod 303

append 12 548 platform.system 292

As shown in Figure 3, PyPI Administrators can achieve the reuse

by filtering either the input or the output of such security scanners.

They can feed tools operating on single files (Malware Checks),

modules, or procedures (Bandit Checks) with input containing

phantom lines, which is expected to reduce both the number of

findings and the tool’s runtime. Scanning tools performing the

whole program or inter-procedural analyses continue to work on

the package’s entire code base. Still, their output can be filtered to

only show findings in phantom lines.

In this paper, we focus on input filtering and show the results of

combining LastPyMile with two well-known malware checking

tools that are broadly used in the PyPI ecosystem:

• Warehouse Malware Checks [52] tool is used by PyPI

to check the suspicious code lines in every package up-

loaded to PyPI. At the time of writing, the tool supports two

787



LastPyMile: Identifying the Discrepancy between Sources and Packages ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 12: LastPyMile on Malware Checks and Bandit alerts

Malware Checks Alerts (X rules on Lines), while Suspicious Bandit Alerts (Y rules on Files). The setup.py column of Malware Checks Alerts is what happens now in PyPI [52]

Artifact Type

In

se
tu
p
.p
y Problem Size Malware Checks Alerts Suspicious Bandit Alerts

#Files
#LoCs

(all files)

#LoCs

(setup.py)

Coverage

(setup.py)
setup.py

whole

pkg

LastPy

Mile
setup.py

whole

pkg

LastPy

Mile

urllib3-1.26.3

Be
ni
gn

80 25 348 97 0, 4% 1 260 0 8 1398 0
requests-2.25.1 32 9325 112 1, 2% 3 57 0 9 505 0
setuptools-53.0.0 244 70 794 162 0, 2% 4 2932 0 5 762 0
urlib3-1.21.1

M
al
ic
io
us Y 72 20 448 197 1% 4 177 3 20 1044 12

request-1.0.117 N 3 166 52 31, 3% 2 8 2 5 27 20
setup-tools-36.0.1 Y 112 31 245 304 1% 8 1289 3 21 489 12

checks: SetupPatternCheck11 for performing regular-

expression based checks of the content of setup.py files

for suspicious patterns on package upload andPackageTu-

rnoverCheck12 for performing daily scans for suspicious

behavior about package ownership. Conceptually Malware

Checks is close to other open-source tools for auditing FOSS

packages [28, 29] that rely on regular expressions to the

whole artifact.

• Bandit [38] is a tool supported by the Python Code Quality

Authority. Bandit was designed to find common security

issues in Python code by scanning all the files included in a

software artifact. For each file in the artifact, the tool creates

an abstract syntax tree (AST) representation and performs

rule-based analysis (plugins) of the AST nodes. Most of the

Bandit rules focus on the vulnerabilities in Python code (e.g.,

Start a process with a function vulnerable to shell injection)

For Malware Checks, we focus on SetupPatternCheck.

Even though this tool currently only checks setup.py files, we

have extended it to scan all files of a software artifact.

For the Bandit tool, we have used the default set of Bandit rules

and then extended them with additional rules so that the tool is

capable of findings all malicious lines of code injected into Python

packages known to be used in typosquatting attacks [33, 50]. Our

rule set checks for suspicious API calls (e.g., exec), imports (e.g.,

socket), and strings (e.g., an URL). Our rules can be found at [48].

To illustrate how the malware checking tools perform on the

artifacts without malicious payloads, we compare their outcome

on three example benign artifacts that correspond to the following

malicious artifacts. We collected the malicious artifacts from the

real attacks by contacting the researchers who reported the attacks.

• urlib3-1.21.1 – malicious code was injected into the

setup.py file. It triggered automatic extraction of data

and sending it to a remote server using the socket li-

brary.13

• request-1.0.117 – while the setup.py file con-

tains the code to trigger the malicious execution from the

hmatch.py file, the actual malicious functionality was

11https://github.com/pypa/warehouse/tree/master/warehouse/malware/checks/
setup patterns
12https://github.com/pypa/warehouse/tree/master/warehouse/malware/checks/
package turnover
13https://docs.python.org/3/library/socket.html

implemented in the hmatch.py file: scanning the com-

puter network and sending results to the remote server using

urllib3 library.14

• setup-tools-36.0.1 – the malicious code injected

into the setup.py file triggered automatic extraction of

sensitive data and sending it to the remote server viasocket

library.

Table 12 presents the results of Malware Checks and Bandit

tools’ scans of the selected artifacts. Since theMalware Checks

tool was primarily designed to scan only setup.py files, we re-

port the number of findings the tools produced on the setup.py.

Then we present the number of alerts when we run the tools on

the whole package. Finally, we show the number of alerts the tools

produced on the lines of phantom code as reported by LastPyMile.

The replication package for Table 12 can be obtained at [51].

We observe that Malware Checks produced at most three

alerts on each of the benign and malicious artifacts when only

the setup.py file was considered. While this amount of alerts is

manageable by humans, checking only the setup.py files allows

one to have coverage of around 1% of the total code base of the

analyzed artifacts, except the malicious request artifact where

scanning setup.py has generated coverage of 31.3%.

When Malware Checks was executed on all files from the

package, the number of alerts rockets to 2-3 orders of magnitude.

Notably, the tool produced more alerts on the benign artifacts than

on the malicious packages. This phenomenon corresponds to the

more extensive code base of the legitimate artifacts.

We observe similar behavior of the Bandit tool. When applied

on the setup.py, the tool generated alerts both on benign and

malicious artifacts. However, Bandit produced significantly more

alerts on the malicious artifacts. When looking at the alerts gener-

ated after running the tool on the entire package, we observe a large

number of alerts. Notably, looking only at the number of alerts,

one could not distinguish between benign and malicious artifacts:

the number of alerts produced on the benign artifacts exceeds the

number of alerts on the malicious artifacts.

After applying LastPyMile to the tool results after running them

on the entire artifacts, we observe a significant reduction of the

number of alerts for both tools. For example, Bandit tool produced

only 12 alerts (out of 1044) after applying LastPyMile on the results

of the urlib3-1.21.1 scan. Similarly, the number of alerts

produced byMalware Checks on the setup-tools-36.0.1

14https://urllib3.readthedocs.io/en/latest/

788

https://github.com/pypa/warehouse/tree/master/warehouse/malware/checks/setup_patterns
https://github.com/pypa/warehouse/tree/master/warehouse/malware/checks/setup_patterns
https://github.com/pypa/warehouse/tree/master/warehouse/malware/checks/package_turnover
https://github.com/pypa/warehouse/tree/master/warehouse/malware/checks/package_turnover
https://docs.python.org/3/library/socket.html
https://urllib3.readthedocs.io/en/latest/


ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Duc-Ly Vu, Fabio Massacci, Ivan Pashchenko, Henrik Plate, and Antonino Sabetta

reduced to 12 instead of 489. Looking at the outcome of the benign

packages, LastPyMile reduced the number of alerts to zero.

Being applied to setup.py files only, Malware Checks tool

generates a number of alerts manageable by humans. However,

scanning of only setup.py files does not guarantee the artifact

to be free from malicious code as the 99% of code is not checked.

The number of alerts that both tools produce after scanning the

entire artifacts (3249 and 2665 false alerts for Malware Checks

and Bandit respectively) demonstrates that such analysis does not

scale for an ‘on-upload’ analysis by PyPI maintainers.

In contrast, LastPyMile shows an excellent potential to im-

prove the scanning results. First, it makes the number of alerts after

running a tool on the entire artifact comparable with the current

number of alerts generated by the Malware Checks (currently

used by PyPI). Second, we do not observe any alerts for benign

artifacts, which allows us to easily distinguish benign and malicious

artifacts in our manual validation of the alerts.

When run on all malicious code packages available from the

literature, we were able to preserve all malicious alerts and did not

introduce false positives over the current scanning process.

Those properties make LastPyMile a candidate for software

vetting processes of government organizations or other OSS con-

sumers with high-security requirements. The review effort is man-

ageable, even though typical development projects have dozens of

dependencies with more or less frequent release and patch cycles.

Summary: LastPyMile reduces the number of alerts produced

by a malware checking tool to a number that a human can check.

We checked our approach against knownmalicious packages, and

we found that LastPyMile can detect all of them. Also, it removes

all the alerts from benign packages, allowing a clear distinction

between benign and malicious packages.

8 THREATS TO VALIDITY

The validity of results reported in this paper is impacted by several

choices made during tool and experiment design.

We only consider repositories hosted on GitHub15. However, there

are no significant obstacles to cover other version control sys-

tems and extend the current implementation to other Git service

providers (e.g. GitLab or Bitbucket) as long as they support code

commits (e.g., Apache Subversion).

The current implementation focuses on the Python packages in PyPI,

and Python files in particular.The extension to other Python ecosys-

tems (e.g., anaconda)16, and interpreted languages and other file

types seem straight-forward (e.g., Node.js/npm and Ruby/RubyGems).

Yet, we only considered the top 4000 packages hosted on PyPI, out

of more than 250 000 packages. A larger number of packages would

need to be considered for an ecosystem analysis.

In terms of design, LastPyMile checks only the code absent from

source repositories even though malicious code could also be in-

cluded in the versioned code, either directly or in tests. This was the

case of the Pillow Python framework17 that was flagged by more

than 15 Antivirus vendors. However, this situation lays out of the

15In our dataset, there are 56 packages hosted in bitbucket.org, 14 packages hosted
in Gitlab, 13 packages hosted in the sourceforge.net, 19 packages are hosted in
code.google.com, and four of them had been moved to GitHub.
16https://repo.anaconda.com/
17https://github.com/python-pillow/Pillow/issues/251

scope of the paper as the test files should have been spotted during

the source code review.

We limit the line-by-line analysis to files with file extension .py.

The main reason driving this design decision is to focus attention on

files whose discrepancies, compared to what users can view in the

respective source code repository, can alter the program flow (e.g.,

when downstream users install an artifact in their development

environment or invoke its API as part of their development project).

Other phantom files might be also be used to inject malware. For

example, the phantom files under the test directories are required by

a popular testing framework like pytest. Another source of phantom

files is the upload of modules specific to a developer development

environment. They are usually not versioned with Git.

Example 6. The phantom files in pydruid-0.5.4.tar.gz

are the manually built Python packages stored in the site-packages

directory. We can verify the origin of the local installed modules by

comparing their code files with the correponding GitHub repository.

By using LastPyMile, we can check that the code files in the local mod-

ule called traitlets (e.g., https://github.com/ ipython/ traitlets)

of the artifact pydruid-0.5.4.tar.gz belonging to the cor-

reponding Github repository.18

Moreover, PyPI packages contain other executables, e.g., Win-

dows portable executables, OSX disk image files, or C/C++ static

libraries. For example, we found many Python bytecode files (end-

ing with .pyc). These files should not be uploaded to PyPI as this

can make the dependent package (e.g., a Debian package) fail to

compile.19 Investigating these cases would require a distinct paper.

We only check additions of code lines in the present version, even

though a vulnerability could be introduced by deleting lines from a

software artifact (e.g., by removing a sanitizing statement). Albeit

LastPyMile does not report the deleted lines in such a case, it could

detect that the files in the uploaded artifacts are different as their

hashes would differ if compared to the hashes of the files stored in

the corresponding source code repository. Limiting the false alerts,

in this case, would require special care to avoid that the whole file

is reported as different. We leave this case for future work.

Some packages contain code automatically generated by tools like

Swagger Codegen or Python distutils. The current implementation of

LastPyMile would generate conceptually false positives as such

files do not conceptually differ from phantom files. These cases

of automatically generated files could be checked by applying the

same code generation tool on the code files in the Github repository

and comparing with the files in published artifacts.

9 RELATED WORK

Zimmermann et al. [55] study security risks for users of npm, in-

cluding potential vulnerable and malicious code in third-party de-

pendencies.The authors showed that npm suffers from single points

of failure in which individual packages could impact large parts

of the entire ecosystem. Attackers could compromise a minimal

number of maintainers’ accounts to inject malicious code into most

packages. The paper, however, does not investigate the potentially

malicious code injection in the package artifacts. Our LastPyMile

18https://github.com/ipython/traitlets
19https://github.com/googleapis/google-auth-library-python/issues/214

789

bitbucket.org
sourceforge.net
code.google.com
https://repo.anaconda.com/
https://github.com/python-pillow/Pillow/issues/251
https://github.com/ipython/traitlets
https://github.com/ipython/traitlets
https://github.com/googleapis/google-auth-library-python/issues/214


LastPyMile: Identifying the Discrepancy between Sources and Packages ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

approach provides a way to audit the popular packages by identify-

ing the delta in the code that developers consume and the original

code developed by vendors in their source code repository.

Ohm et al. [33] presents a taxonomy of attack vectors and a

dataset of malicious software packages used in real-world attacks on

open-source software supply chains on three package repositories

npm, PyPI, and RubyGems. This work highlights that typosquatting

and infection of an existing package are the two most common

attacks. This work, however, does not investigate the presence of

code injections in legitimate and malicious packages. Our approach

involves developing a method to identify the discrepancies between

distributed artifacts and source code repositories that could be

attributed to the malicious code injection.

Several works ([44, 50]) study the potential impact of typosquat-

ting attacks on PyPI packages based on the Levenshtein distance

and number of downloads of the targeted package. They show a

large number of typosquatting candidates in PyPI that PyPI Ad-

ministrators should investigate. However, relying only on package

names may cause many false positives, and a more in-depth anal-

ysis of distributed artifacts is required. Our approach provides a

methodology to verify the potential typosquatting package by high-

lighting the differences between the typosquatting packages and

the GitHub repository.

Code-based approaches ([5], [34], [13], [36]) can provide more ac-

curacy in detectingmalicious packages. Several approaches scan the

setup.py file of the package artifact to identify suspicious code.

Bertu [5] statically parses the Python installation scriptsetup.py

as an AST tree and looks for suspicious patterns (e.g., network con-

nections). Malware Checks uses a set of Yara rules on the lines of

code on thesetup.py file. Similarly,ApplicationInspec-

tor and OSSGadget [29] check the distributed artifacts using a

set of regular expressions to identify potential backdoors within a

package. Although these approaches are fast and straightforward,

they can generate many false alerts when scanning setup.py

performing legitimate behavior in the installation process (e.g.,

downloading a dependency from a remote server). Our approach

fills this gap by allowing these tools to scan only the phantom lines

which were potentially introduced.

Several techniques use dynamic analysis to expose the malicious

behaviors of the package. Buildwatch [34] dynamically execute

package code in the Cuckoo sandbox [15] and captures all system

calls, such as kernel services requested by processes. Duan et al.

propose MalOSS [13], a hybrid approach, which extracts various

features of distributed artifacts using metadata, static and dynamic

analyses. These methods, however, are resource-heavy which may

be challenging to integrate into the development pipeline. Last-

PyMile uses a lightweight comparison to help these approaches by

reducing the number of files and lines that need to be scanned to

detect malicious code injections, making the existing techniques

efficiently adapt to individual developers’ development pipelines.

Garrett et al. [14, 16] use an anomaly detection based approach

on features extracted from packages’ metadata and source code to

detect suspicious package updates in npm.Themethod could reduce

the review effort by 89%. However, the approach cannot highlight

the code injections with the existing features as it analyzes only

the published artifacts. Our LastPyMile can highlight the code

injections and can be adapted to provide explanations to developers.

Gonzalez et al. [17] uses commit logs and repository metadata

to detect potential malicious commits automatically. The method

identifies 53.3% of malicious commits while flagging less than 1% of

commits in the studied dataset. Our LastPyMile instead looks for

the code injections into the source code repositories by considering

both the packages and source code repositories.

Summary: Although current approaches on auditing packages

caught some malicious examples, their focus is on detecting ma-

licious patterns in published artifacts, which may cause many

false alerts. Also, scanning the whole code of an artifact would

not be effective in case of code injection attacks where only a

small subset of code is malicious. Instead, our approach focuses

on detecting code injections in distributed artifacts, thus comple-

menting the current techniques by reducing the number of code

lines to be analyzed to detect software supply chain attacks.

10 CONCLUSION

We investigated the discrepancies between published artifacts and

source code repositories to understand the risk of malicious injec-

tions during the software release process. Our empirical analysis of

2438 most downloaded PyPI packages shows that there exist differ-

ences between packages in PyPI and the corresponding source code

repositories at different levels of granularity (artifacts, files, and

lines). The differences are attributed to developers and automated

tools (e.g., packaging tools), and could impact the consumers, e.g.,

causing compilation issues or representing a potential for contain-

ing malicious code injections.

The flexible combination of LastPyMile (as input/output filter)

with other security tools offers the possibility to reduce the number

of findings and the time required by vetting processes.We instructed

Malware Checks and Bandit to only consider phantom code as

input, and the resulting decrease in false alerts makes it possible to

use LastPyMile as an additional check in the PyPI vetting processes

with minimal impact on review efforts.

A replication package is available at [51] and we plan to submit

LastPyMile as a new check to PyPI.20

Several issues still remain: malicious code can be hidden in many

other forms, such as webpages (HTML with embedded or external

JavaScript) or project configuration files (requirements.txt

with amalicious dependency).We notice a high number of requi-

rements.txt configuration files, which contain the list of de-

pendencies to be installed automatically with pip install.

This could be a potential vector for adversaries to add malicious

injections worth further investigations.

ACKNOWLEDGMENTS

We are grateful to Michael Salsone, Lukas Martini for sharing with

us the malicious examples, and the anonymous reviewers for their

insightful and actionable suggestions.

This research has been partly funded by the EU H2020 Programs

H2020-EU.2.1.1-CyberSec4Europe (Grant No. 830929), AssureMoss

(Grant No. 952647) and SPARTA project (Grant No. 830892).

20https://warehouse.pypa.io/development/malware-checks.html#adding-new-
checks

790

https://warehouse.pypa.io/development/malware-checks.html#adding-new-checks
https://warehouse.pypa.io/development/malware-checks.html#adding-new-checks


ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Duc-Ly Vu, Fabio Massacci, Ivan Pashchenko, Henrik Plate, and Antonino Sabetta

REFERENCES
[1] 2018. Backdoor in ssh-decorator package. https://www.reddit.com/r/Python/

comments/8hvzja/backdoor in sshdecorator package/. Accessed 29 July 2020.
[2] 2020. in-depth comparison of files, archives, and directories. https://

diffoscope.org. Accessed 15 Feb 2020.
[3] 2020. Tracking which wheels can be reproducibly built. https://

www.redshiftzero.com/reproducible-wheels/. Accessed 03 January 2021.
[4] William Bengtson. 2020. Python Typosquatting for Fun not Profit.

https://medium.com/@williambengtson/python-typosquatting-for-fun-
not-profit-99869579c35d. Accessed: 2020-08-17.

[5] Bertus. 2018. Detecting Cyber Attacks in the Python Package Index
(PyPI). https://medium.com/@bertusk/detecting-cyber-attacks-in-the-python-
package-index-pypi-61ab2b585c67. Accessed 18 January 2020.

[6] Ethan Bommarito and Michael Bommarito. 2019. An Empirical Analysis of the
Python Package Index (PyPI). arXiv preprint arXiv:1907.11073 (2019).

[7] Catalin Cimpanu. 2018. Backdoored Python Library Caught Stealing SSH Creden-
tials. https://www.bleepingcomputer.com/news/security/backdoored-python-
library-caught-stealing-ssh-credentials/. Accessed: 2020-08-17.

[8] Catalin Cimpanu. 2019. Two malicious Python libraries caught stealing SSH
and GPG keys. https://www.zdnet.com/article/two-malicious-python-libraries-
removed-from-pypi/. Accessed: 2020-08-17.

[9] Russ Cox. 2019. Surviving Software Dependencies: Software Reuse is Finally
Here but Comes with Risks. Queue 17, 2 (April 2019), 24–47. https://doi.org/
10.1145/3329781.3344149

[10] Stanislav Dashevskyi, Achim D. Brucker, and Fabio Massacci. 2016. On the
Security Cost of Using a Free and Open Source Component in a Proprietary
Product. In Proceedings of the 8th International Symposium on Engineering Secure
Software and Systems - Volume 9639 (London, UK) (ESSoS 2016). Springer-Verlag,
Berlin, Heidelberg, 190–206. https://doi.org/10.1007/978-3-319-30806-7 12

[11] Debian. 2019. Reproducible Builds. https://reproducible-builds.org/. Accessed:
2020-08-17.

[12] Charlie Denton. 2021. Python Wheels. https://pythonwheels.com/.
[13] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltaformag-

gio, and Wenke Lee. 2021. Towards Measuring Supply Chain Attacks on Package
Managers for Interpreted Languages. In Proc. of NDSS’21.

[14] Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kästner. 2021. Contain-
ing Malicious Package Updates in npm with a Lightweight Permission System. In
Proc. of ICSE’21). IEEE, 1334–1346. https://doi.org/10.1109/ICSE43902.2021.00121

[15] Stichting Cuckoo Foundation. 2021. cuckoo: Automated Malware Analysis.
https://cuckoosandbox.org/.

[16] Kalil Garrett, Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian
Kästner. 2019. Detecting suspicious package updates. In Proc. of ICSE’19: New
Ideas and Emerging Results. IEEE Press, 13–16. https://doi.org/10.1109/ICSE-
NIER.2019.00012

[17] Danielle Gonzalez, Thomas Zimmermann, Patrice Godefroid, and Max Schäfer.
2021. Anomalicious: Automated Detection of Anomalous and Potentially Mali-
cious Commits on GitHub. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 258–267.
https://doi.org/10.1109/ICSE-SEIP52600.2021.00035

[18] Pronnoy Goswami, Saksham Gupta, Zhiyuan Li, Na Meng, and Daphne Yao. 2020.
Investigating The Reproducibility of NPM Packages. In 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 677–681. https:
//doi.org/10.1109/ICSME46990.2020.00071

[19] Danny Grander and Liran Tal. 2018. A Post-Mortem of the Malicious event-
stream backdoor. https://snyk.io/blog/a-post-mortem-of-the-malicious-event-
stream-backdoor/. Accessed: 2020-06-01.

[20] Trey Herr, June Lee, William Loomis, and Stewart Scott. 2020. Break-
ing Trust: Shades of Crisis Across an Insecure Software Supply Chain.
https://www.atlanticcouncil.org/in-depth-research-reports/report/breaking-
trust-shades-of-crisis-across-an-insecure-software-supply-chain/. Accessed:
2020-07-30.

[21] Daniel Holth. 2012. PEP 427 – The Wheel Binary Package Format 1.0. https:
//www.python.org/dev/peps/pep-0427/. Accessed: 2020-10-10.

[22] Maya Kaczorowski. 2020. Secure at every step: What is software supply chain
security and why does it matter? https://github.blog/2020-09-02-secure-your-
software-supply-chain-and-protect-against-supply-chain-threats-github-
blog/.

[23] Andrey Kuyan, Sergey Gusev, Andrey Kozlov, Zhanibek Kaimuldenov, and
Evgeny Kravtsunov. 2013. Experience of Building and Deployment Debian
on Elbrus Architecture. In Proceedings of the Spring/Summer Young Researchers’
Colloquium on Software Engineering.

[24] Chris Lamb and Stefano Zacchiroli. 2021. Reproducible Builds: Increasing the
Integrity of Software Supply Chains. IEEE Software (2021). https://doi.org/
10.1109/MS.2021.3073045

[25] Enrique Larios Vargas, Maurı́cio Aniche, Christoph Treude, Magiel Bruntink,
and Georgios Gousios. 2020. Selecting third-party libraries: The practitioners’
perspective. In Proc. of the 28th ACM European Software Engineering Conf. and

Symp. on the Foundations of Software Engineering. 245–256.
[26] Kim Lewandowski and Mark Lodato. 2021. Introducing SLSA, an End-to-End

Framework for Supply Chain Integrity. https://security.googleblog.com/2021/
06/introducing-slsa-end-to-end-framework.html.

[27] Lutoma. 2019. PSA:There is a fake version of this package on PyPI with malicious
code. https://github.com/dateutil/dateutil/issues/984. Accessed 6 February 2020.

[28] Microsoft. 2019. Microsoft ApplicationInspector: A source code analyzer. https:
//github.com/microsoft/ApplicationInspector. Accessed 21 February 2020.

[29] Microsoft. 2020. OSS Gadget: Collection of tools for analyzing open source
packages. https://github.com/microsoft/OSSGadget.

[30] Maximilian Nothe. 2021. Who has already dropped Python 2 support? https:
//maxnoe.github.io/who-dropped-python2/.

[31] National Institute of Standards and Technology (NIST). 2020. Security and Privacy
Controls for Federal Information Systems and Organizations, SP 800-53, Revi-
sion 5, September 2020. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-53r5.pdf. Accessed 21 Feb 2021.

[32] Marc Ohm, Lukas Kempf, Felix Boes, and Michael Meier. 2020. If You’ve Seen One,
You’ve SeenThemAll: Leveraging AST Clustering Using MCL to Mimic Expertise
to Detect Software Supply Chain Attacks. arXiv preprint arXiv:2011.02235 (2020).

[33] Marc Ohm, Henrik Plate, Arnold Sykosch, andMichael Meier. 2020. Backstabber’s
Knife Collection: A Review of Open Source Software Supply Chain Attacks. In
Proc. of DIMVA. Springer, 23–43. https://doi.org/10.1007/978-3-030-52683-2 2

[34] Marc Ohm, Arnold Sykosch, and Michael Meier. 2020. Towards detection of
software supply chain attacks by forensic artifacts. In Proceedings of ARES’20.
1–6. https://doi.org/10.1145/3407023.3409183

[35] Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci. 2020. A qualitative study of
dependency management and its security implications. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security. 1513–1531.
https://doi.org/10.1145/3372297.3417232

[36] Brian Pfretzschner and Lotfi ben Othmane. 2017. Identification of Dependency-
based Attacks on Node. js. In Proc. of ARES’17. 1–6. https://doi.org/10.1145/
3098954.3120928

[37] Nikita Popov. 2021. Changes to Git commit workflow. https://news-web.php.net/
php.internals/113838.

[38] PyCQA. [n.d.]. Security oriented static analyser for python code. https://pypi.org/
project/bandit/.

[39] David Saff and Michael D Ernst. 2003. Reducing wasted development time via
continuous testing. In Proc. of ISSRE 2003. IEEE, 281–292. https://doi.org/10.1109/
ISSRE.2003.1251050

[40] Slovak. 2019. skcsirt-sa-20170909-pypi. https://www.nbu.gov.sk/skcsirt-sa-
20170909-pypi/. Accessed 6 February 2020.

[41] Sonatype. 2019. 2019 State of the Software Supply Chain Report Re-
veals Best Practices From 36,000 Open Source Software Development
Teams. https://www.sonatype.com/press-release-blog/2019-state-of-the-
software-supply-chain-report-reveals-best-practices-from-36000-open-
source-software-development-teams.

[42] Steve Stagg. 2017. Building a botnet on PyPi. https://hackernoon.com/building-
a-botnet-on-pypi-be1ad280b8d6. Accessed: 2020-2-11.

[43] Synopsys. 2020. Synopsys 2020 Open Source Security and Risk Analysis Re-
port. https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/
2020-ossra-report.pdf.

[44] Matthew Taylor, Ruturaj Vaidya, Drew Davidson, Lorenzo De Carli, and Vaib-
hav Rastogi. 2020. Defending Against Package Typosquatting. In Interna-
tional Conference on Network and System Security. Springer, 112–131. https:
//doi.org/10.1007/978-3-030-65745-1 7

[45] Nikolai Philipp Tschacher. 2016. Typosquatting in programming language package
managers. Ph.D. Dissertation. Universität Hamburg, Fachbereich Informatik.

[46] Hugo van Kemenade. 2021. Top PyPI Packages. https://doi.org/10.5281/
zenodo.4486832

[47] Laurie Voss. 2018. npm and the future of JavaScript. https://slides.com/seldo/npm-
future-of-javascript.

[48] Duc-Ly Vu. 2020. A fork of Bandit tool with patterns to identifying malicious
python code. https://github.com/lyvd/bandit4mal.

[49] Duc Ly Vu, Ivan Pashchenko, Fabio Massacci, Henrik Plate, and Antonino Sabetta.
2020. Towards Using Source Code Repositories to Identify Software Supply Chain
Attacks. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security. 2093–2095. https://doi.org/10.1145/3372297.3420015

[50] Duc-Ly Vu, Ivan Pashchenko, Fabio Massacci, Henrik Plate, and Antonino Sabetta.
2020. Typosquatting and Combosquatting Attacks on the Python Ecosystem. In
2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW).
https://doi.org/10.1109/EuroSPW51379.2020.00074

[51] Duc Ly Vu, Ivan Pashchenko, Fabio Massacci, Henrik Plate, and Antonino Sabetta.
2021. LastPyMile Replication Package. https://doi.org/10.5281/zenodo.4899935

[52] Warehouse. 2020. Malware Checks. https://warehouse.readthedocs.io/
development/malware-checks/#malware-checks.

[53] Warehouse. 2020. Warehouse codebase. https://warehouse.readthedocs.io/
application.html.

791

https://www.reddit.com/r/Python/comments/8hvzja/backdoor_in_sshdecorator_package/
https://www.reddit.com/r/Python/comments/8hvzja/backdoor_in_sshdecorator_package/
https://diffoscope.org
https://diffoscope.org
https://www.redshiftzero.com/reproducible-wheels/
https://www.redshiftzero.com/reproducible-wheels/
https://medium.com/@williambengtson/python-typosquatting-for-fun-not-profit-99869579c35d
https://medium.com/@williambengtson/python-typosquatting-for-fun-not-profit-99869579c35d
https://medium.com/@bertusk/detecting-cyber-attacks-in-the-python-package-index-pypi-61ab2b585c67
https://medium.com/@bertusk/detecting-cyber-attacks-in-the-python-package-index-pypi-61ab2b585c67
https://www.bleepingcomputer.com/news/security/backdoored-python-library-caught-stealing-ssh-credentials/
https://www.bleepingcomputer.com/news/security/backdoored-python-library-caught-stealing-ssh-credentials/
https://www.zdnet.com/article/two-malicious-python-libraries-removed-from-pypi/
https://www.zdnet.com/article/two-malicious-python-libraries-removed-from-pypi/
https://doi.org/10.1145/3329781.3344149
https://doi.org/10.1145/3329781.3344149
https://doi.org/10.1007/978-3-319-30806-7_12
https://reproducible-builds.org/
https://pythonwheels.com/
https://doi.org/10.1109/ICSE43902.2021.00121
https://cuckoosandbox.org/
https://doi.org/10.1109/ICSE-NIER.2019.00012
https://doi.org/10.1109/ICSE-NIER.2019.00012
https://doi.org/10.1109/ICSE-SEIP52600.2021.00035
https://doi.org/10.1109/ICSME46990.2020.00071
https://doi.org/10.1109/ICSME46990.2020.00071
https://snyk.io/blog/a-post-mortem-of-the-malicious-event-stream-backdoor/
https://snyk.io/blog/a-post-mortem-of-the-malicious-event-stream-backdoor/
https://www.atlanticcouncil.org/in-depth-research-reports/report/breaking-trust-shades-of-crisis-across-an-insecure-software-supply-chain/
https://www.atlanticcouncil.org/in-depth-research-reports/report/breaking-trust-shades-of-crisis-across-an-insecure-software-supply-chain/
https://www.python.org/dev/peps/pep-0427/
https://www.python.org/dev/peps/pep-0427/
https://github.blog/2020-09-02-secure-your-software-supply-chain-and-protect-against-supply-chain-threats-github-blog/
https://github.blog/2020-09-02-secure-your-software-supply-chain-and-protect-against-supply-chain-threats-github-blog/
https://github.blog/2020-09-02-secure-your-software-supply-chain-and-protect-against-supply-chain-threats-github-blog/
https://doi.org/10.1109/MS.2021.3073045
https://doi.org/10.1109/MS.2021.3073045
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://github.com/dateutil/dateutil/issues/984
https://github.com/microsoft/ApplicationInspector
https://github.com/microsoft/ApplicationInspector
https://github.com/microsoft/OSSGadget
https://maxnoe.github.io/who-dropped-python2/
https://maxnoe.github.io/who-dropped-python2/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf
https://doi.org/10.1007/978-3-030-52683-2_2
https://doi.org/10.1145/3407023.3409183
https://doi.org/10.1145/3372297.3417232
https://doi.org/10.1145/3098954.3120928
https://doi.org/10.1145/3098954.3120928
https://news-web.php.net/php.internals/113838
https://news-web.php.net/php.internals/113838
https://pypi.org/project/bandit/
https://pypi.org/project/bandit/
https://doi.org/10.1109/ISSRE.2003.1251050
https://doi.org/10.1109/ISSRE.2003.1251050
https://www.nbu.gov.sk/skcsirt-sa-20170909-pypi/
https://www.nbu.gov.sk/skcsirt-sa-20170909-pypi/
https://www.sonatype.com/press-release-blog/2019-state-of-the-software-supply-chain-report-reveals-best-practices-from-36000-open-source-software-development-teams
https://www.sonatype.com/press-release-blog/2019-state-of-the-software-supply-chain-report-reveals-best-practices-from-36000-open-source-software-development-teams
https://www.sonatype.com/press-release-blog/2019-state-of-the-software-supply-chain-report-reveals-best-practices-from-36000-open-source-software-development-teams
https://hackernoon.com/building-a-botnet-on-pypi-be1ad280b8d6
https://hackernoon.com/building-a-botnet-on-pypi-be1ad280b8d6
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2020-ossra-report.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2020-ossra-report.pdf
https://doi.org/10.1007/978-3-030-65745-1_7
https://doi.org/10.1007/978-3-030-65745-1_7
https://doi.org/10.5281/zenodo.4486832
https://doi.org/10.5281/zenodo.4486832
https://slides.com/seldo/npm-future-of-javascript
https://slides.com/seldo/npm-future-of-javascript
https://github.com/lyvd/bandit4mal
https://doi.org/10.1145/3372297.3420015
https://doi.org/10.1109/EuroSPW51379.2020.00074
https://doi.org/10.5281/zenodo.4899935
https://warehouse.readthedocs.io/development/malware-checks/#malware-checks
https://warehouse.readthedocs.io/development/malware-checks/#malware-checks
https://warehouse.readthedocs.io/application.html
https://warehouse.readthedocs.io/application.html


LastPyMile: Identifying the Discrepancy between Sources and Packages ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

[54] Joshua Wehner. 2016. Working with submodules. https://github.blog/2016-02-
01-working-with-submodules/.

[55] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.
2019. Small world with high risks: A study of security threats in the npm

ecosystem. In 28th {USENIX} Security Symposium ({USENIX} Security 19). 995–
1010.

792

https://github.blog/2016-02-01-working-with-submodules/
https://github.blog/2016-02-01-working-with-submodules/

	Abstract
	1 Introduction
	2 Terminology
	3 Background
	3.1 The Last Mile from Source to Package
	3.2 Software Supply Chain Attacks
	3.3 Reproducible Builds as an Ideal Solution
	3.4 Current PyPI Packages Scanners

	4 RQ1: LastPyMile to identify code injection
	5 Data collection
	6 RQ2: Differences between source code and package repositories
	7 RQ3: LastPyMile combined with other package scanners
	8 Threats to Validity
	9 Related work
	10 Conclusion
	References

