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Abstract

Free and Open-Source Software (FOSS) has become an integral part of the
software supply chain in the past decade. Various entities (automated tools
and humans) are involved at different stages of the software supply chain.
Some actions that occur in the chain may result in vulnerabilities or mali-
cious code injected in a published artifact distributed in a package repository.
At the end of the software supply chain, developers or end-users may con-
sume the resulting artifacts altered in transit, including benign and malicious
injection.

This dissertation starts from the first link in the software supply chain,
‘developers’. Since many developers do not update their vulnerable software
libraries, thus exposing the user of their code to security risks. To under-
stand how they choose, manage and update the libraries, packages, and other
Open-Source Software (OSS) that become the building blocks of companies’
completed products consumed by end-users, twenty-five semi-structured inter-
views were conducted with developers of both large and small-medium enter-
prises in nine countries. All interviews were transcribed, coded, and analyzed
according to applied thematic analysis.

Although there are many observations about developers’ attitudes on se-
lecting dependencies for their projects, additional quantitative work is needed
to validate whether behavior matches or whether there is a gap. Therefore,
we provide an extensive empirical analysis of twelve quality and popularity
factors that should explain the corresponding popularity (adoption) of PyPI
packages was conducted using our tool called py2src.

At the end of the software supply chain, software libraries (or packages)
are usually downloaded directly from the package registries via package de-
pendency management systems under the comfortable assumption that no



discrepancies are introduced in the last mile between the source code and
their respective packages. However, such discrepancies might be introduced
by manual or automated build tools (e.g., metadata, Python bytecode files)
or for evil purposes (malicious code injects). To identify differences between
the published Python packages in PyPI and the source code stored on Github,
we developed a new approach called LastPyMile . Our approach has been
shown to be promising to integrate within the current package dependency
management systems or company workflow for vetting packages at a mini-
mal cost.

With the ever-increasing numbers of software bugs and security vulnerabil-
ities, the burden of secure software supply chain management on developers
and project owners increases. Although automated program repair approaches
promise to reduce the burden of bug-fixing tasks by suggesting likely correct
patches for software bugs, little is known about the practical aspects of using
APR tools, such as how long one should wait for a tool to generate a bug fix.
To provide a realistic evaluation of five state-of-the-art APR tools, 221 bugs
from 44 open-source Java projects were run within a reasonable developers’
time and effort.

Keywords— Automated Program Repair, Mining Source Code Reposi-
tories, Software Supply Chain Attacks, Software Security, Software Supply
Chain Security, Software Vulnerabilities, Dependency Management, FOSS
Ecosystem, Empirical Study, Qualitative Study, Quantitative Study.
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1
Introduction

“In science, if you know what you are doing, you should not be doing it. In
engineering, if you do not know what you are doing, you should not be doing it.”

– Richard Hamming

The expression software supply chain refers to “anything that goes into or affects
your code from development, through your CI/CD pipeline, until it gets deployed into
production" [87]. In the past decade, Free and Open-Source Software (FOSS) has become
an integral part of the software supply chain: as much as 99% of codebases contain open-
source code [180], and 85% [174] to 97% [195] of enterprise codebases comes from open
source.

Unfortunately, software supply chain compromises are common and impactful. An
attacker can compromise any single step in the process to maliciously modify the software
and harm any of this software’s users [183]. According to the Symantec Internet Threat
Security Report (ISTR), Software Supply Chain compromise is the fastest growing threat
to internet users — which rose 438% from 2017 to 2019. High and low profile companies
are affected including companies like Apple, Microsoft [27]. Protecting against attacks on
the software supply chain presents a complicated challenge because, as mentioned above,
the ecosystems in which software are made are incredibly varied, and a compromise of a
simple node in the pipeline often produces a complete subversion of the delivered product.

To harden the software supply chain security, this dissertation investigates each step
of the software supply chain, for example:

• How and why developers select a software dependency (or package)?
• How do developers manage and maintain the dependencies of their projects? How

do developers react to vulnerabilities in their dependencies?

1



1.1. Problems and Research Questions Chapter 1

Table 1.1: Mapping of the Contributions to the Problems and Research questions

Contribution Problem Research Question
P1 P2 P3 P4 RQ1.1 RQ1.2 RQ1.3 RQ1.4 RQ2.1 RQ2.2 RQ3.1 RQ3.2 RQ3.3 RQ4.1

C1 3 3 3 3 3 3 3

C2 3 3 3 3

C3 3 3 3 3

C4 3 3

• Which factors developers rely on when selecting a package? Are those factors always
available?

• Are there any differences between packages (consumed by downstream projects) and
sources? If so, how much?

• To what extent automatic tools are able to support developers fixing a bug under
time constraints?

• How do the automated program techniques perform in practice?
Developers are key factors of the supply chain, thus the thesis first qualitatively looks at
the choices and the interplay of functional and security concerns on the developers’ overall
decision-making strategies for selecting, managing, and updating software dependencies in
their projects. Then a quantitative validaton of the factors mentioned by developers is
performed on the top most downloaded Python packages on the PyPI ecosystem. Dis-
crepancies in distributed package artifacts compared to their respective source code repos-
itories, which pose both operational risks and security risks in the software supply chain,
the next chapter proposes a methodology to identifying these discrepances. Finally, we
investigate practical use cases of automated program repair to generate fixes for software
bugs in the final products of the supply chain.

The next sections specify the problems associated with different elements of the soft-
ware supply chain, and thesis’s contributions to addressing the problems. Table 1.1 sum-
marizes the association of contributions and problems in this thesis.

1.1 Problems and Research Questions

This section describes the problems followed by our research questions formulated to be
answered to address the problems. Table 1.1 shows the mapping of the problems/research
questions and our contributions described in the next section.

A handful of studies (Table 2.3) report that developers do not update dependencies
in their projects [29,30,75]. The developer’s perception of software dependencies and the
relative importance of security and functionality issues have been studied using the rigid

2



Chapter 1 1.1. Problems and Research Questions

format of surveys [46] and the anecdotal examples that complement quantitative studies
on dependencies [91]. Although functionality and security appear to be essential factors
that affect developers’ decisions [14], those studies mainly focus on functionality aspects,
and therefore, provide limited insights on the impact of security concerns on developers’
reasoning. Several studies [46, 82] also show this tension between functionality and secu-
rity, but the studies are about ecosystems that do not feature a central place for storing
and managing app dependencies. Developers with a central dependency management
system, like Maven, npm, or PyPI, might have a very different approach towards the
dependencies of their applications.

Problem 1: The existing studies have not investigated the interplay between security
and functionality or the use of a central dependency management system. Hence, state-
of-the-art studies do not capture different trade-offs between objectives.

RQ1.1: How do developers select dependencies to include into their projects,
and where (if at all) does security play a role?

RQ1.2: Why do developers decide to update software dependencies, and how do
security concerns affect their decisions?

RQ1.3: Which methods, techniques, or automated analysis tools (e.g., Github
Security Alerts) do developers apply while managing (vulnerable) software
dependencies?

RQ1.4: Which mitigations do developers apply for vulnerable dependencies with
no fixed version available?

Developers rely on various factors displayed on Github repository (e.g., number of
stars, presence of a repository badges) [94, 133] to form impressions about a library. De-
velopers are reported to rely on factors available on the source code repositories. Since the
number of ‘factors’ that may play a role in the selection process of a library is substantial,
we identify the following problem in ‘factors’ suggested in the qualitative studies (e.g.,
interviews or surveys):
Problem 2: Current qualitative studies lack validation that source code repositories are
always easy to find or factors supporting developer’s choices of a software dependency are
available.

RQ2.1: How can we combine the information on PyPI pages to accurately iden-
tify GitHub URLs corresponding to PyPI packages and validate them?

RQ2.2: Which of the suggested factors do explain the adoption of a library?
Developers download pre-built artifacts from package repositories (such as npm for

JavaScript, PyPI for Python, or RubyGems for Ruby) under the comfortable assumption

3
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that no discrepancies are introduced in the last mile between the source code and their re-
spective packages. However, such differences might be introduced by manual or automated
build tools (e.g., metadata, Python bytecode files) [68] or for evil purposes. In particular,
the differences between distributed artifacts and source code repositories could pose both
operational risks (e.g., making dependent projects unable to compile) and security risks
(e.g., deploying malicious code during package installation) for downstream components
in the software supply chain. We identify the corresponding problem as follows:

Problem 3: Current package malware scanners which focus on one file are feasible but
not enough, and reviewing an entire package is unfeasible due to the high number of false
positives.

RQ3.1: Can we effectively and efficiently identify differences?
RQ3.2: How big are the ‘normal’ differences between source code and package

repositories?
RQ3.3: Can LastPyMile be combined with package scanners while keeping

the number of alerts manageable by a human?
Automated program repair (APR) techniques can relieve programmers from the bur-

den of manually fixing the ever-increasing number of programming mistakes or software
vulnerabilities during the software development and maintenance phase. Developers would
like to have a way to automatically fix bugs based on the qualitative study in Chapter 3.
Unfortunately, the practical aspect of APR tools on developers’ development has received
little attention. We have identified the following problem:

Problem 4: Current evaluations of automatic program repair (APR) techniques focus on
tools’ effectiveness, while little is known about the practical aspects of using APR tools,
such as how long one should wait for a tool to generate a bug fix.

RQ4.1: By doubling the time budget of an APR tool, do we get twice more
plausible patches?

1.2 Contributions

The thesis contributes to understanding and addressing the problems in the software
supply chain both qualitatively and quantitatively. Figure 1.1 depicts the connections
between each component in the software supply chain and the contributions and research
questions in this thesis.

C1: A sound qualitative study of the motivation of developers between the rigid
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format of surveys (e.g., Derr et al. [46]) and the anecdotal examples that comple-
ment quantitative studies on dependencies (e.g., Kula et al. [91]). We conducted
25 semi-structured interviews with the professional developers of both large and
small-medium enterprises located in nine countries. All interviews were transcribed,
coded, and analyzed according to applied thematic analysis.

The quantitative studies have been focused on the packages consumed by the end users
in the software supply chains. We focus on Python packages in the PyPI package reposi-
tory because Python is the most popular language based on the 2021 TIOBE index [182]
and the common language used by the developers in our qualitative study 3.

C2: A quantitative validation of the most commonly cited factors and their influence
on the choices of a software dependency. We have developed a tool called py2src
to automatically identify GitHub source code repositories corresponding to pack-
ages in the Python ecosystem PyPI and extract the popularity and quality factors
of the source code from GitHub that should explain the corresponding popularity
(adoption) of packages in PyPI.

C3: A methodology called LastPyMile identifies the differences between build arti-
facts of software packages and the respective source code repository. We show how
it can be used to extend current package scanning practices for malware injection
(which only covers less than 1% of the code of deployed packages). We are working
to submit LastPyMile as a new check to PyPI [204].

A preliminary assessment of automatic program repair tools on supporting fixing bugs
of the software used in the software supply chain. We focus on the time budgets needed
by the tools because it is the essential factor affecting development activity and the
integration of the tools into the software development pipeline.

C4: An evaluation of Automated Program Repair (APR) tools as any time algorithms
(e.g., the more time they have, the more fixes they generate, so it makes sense
to trade off longer time for better quality). Our preliminary experiment on five
APR tools and 221 Java bugs shows that the amount of plausible patches, given
exponentially greater time, only increases linearly or not at all.

Section 5 of this thesis was performed in close collaboration with SAP Security Re-
search to devise a methodology to detect code injections in software supply chain attacks.
However, this thesis represents the research carried out by the author and does not nec-
essarily represent the official position or research interests of SAP. The concrete contri-
butions of the author of this thesis to the published works are declared in Appendix 8.1.
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Development Tools

Repositories

Package Dependency
Management Systems

APR

py2src

LastPyMile

RQ1.1

RQ1.2

RQ1.3

RQ1.4

RQ4.1

RQ2.1

RQ2.2

RQ3.1

RQ3.2

RQ3.3

Figure 1.1: The software supply chain, and our contributions, research questions
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1.3 Thesis Structure

This thesis is organized as follows:
Chapter 2 presents general concepts of the software supply chain, a systematic litera-

ture review that aggregates, summarizes relevant primary studies and techniques as well
as existing services concerning each stage in the software supply chain. The content of
this chapter was partially published in the following papers:

[136] Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci. “A qualitative study of de-
pendency management and its security implications.” In Proceedings of the 27th ACM
SIGSAC Conference on Computer and Communications Security, 2020. A poster [135]
was also presented at the 42nd IEEE/ACM International Conference on Software En-
gineering (ICSE), 2020.

[201] Duc-Ly Vu, Ivan Pashchenko, Fabio Massacci, Henrik Plate, Antonino Sabetta.
“Typosquatting and Combosquatting Attacks on the Python Ecosystem” In Pro-
ceedings of the 5th IEEE European Symposium on Security and Privacy Workshops
(WACCO), 2020.

Chapter 3 reports the results of 25 semi-structured interviews with professional soft-
ware developers on their perception of software dependencies. All 25 interviews as well
as the full analysis were reported in the following paper:

[136] Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci. “A qualitative study of depen-
dency management and its security implications.” In Proceedings of the 27th ACM
SIGSAC Conference on Computer and Communications Security (CCS), 2020. A
poster [135] was also presented at the 42nd IEEE/ACM International Conference on
Software Engineering (ICSE), 2020.

Chapter 4 depicts the results of our empirical validation for each observation from
the previous chapter of this thesis. The automatic approach to identify Github URLs
that correspond to PyPI packages (Subsection 4.2.1 and Subsection 4.3) and the manual
validation of the Github URLs (Subsection 4.4) were reported in the following paper:

[198] Duc-Ly Vu. “py2src: Towards the Automatic (and Reliable) Identification of
Sources for PyPI Package” In Proceedings of the 35th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE SRC), 2021. This paper has also
been awarded an ACM Silver Medal in the graduate category at the same conference.
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The complete analysis of the qualitative identified quality and popularity factors of
the PyPI packages for the actual selection of a new package is planned to submitted to
submitted a software engineering journal:

Simone Pirroca, Duc-Ly Vu, Fabio Massacci, Ivan Pashchenko. “py2src: Automatic
Identification of Source Code Repositories and Factors for Selecting New PyPI Pack-
ages” To be submitted to a software engineering journal.

Chapter 5 describes a methodology called, LastPyMile , for identifying the discrep-
ancy between packages and sources (whether a particular code fragment in a package
originates from its source code repository). The approach for detecting the discrepancy
and complete analysis of the discrepancy were presented in the following paper:

[202] Duc-Ly Vu, Ivan Pashchenko, Fabio Massacci, Henrik Plate, Antonino Sabetta.
“LastPyMile: identifying the discrepancy between sources and packages” In Proceed-
ings of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE), 2021. A
poster [200] was also presented at the 27th ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2020.

Chapter 6 reports a preliminary evaluation of APR tools focusing on how much time
a developer should wait for a fix. The main findings were provided in the following paper:

[199] Duc-Ly Vu, Ivan Pashchenko, Fabio Massacci. “Please hold on: more time=
more patches? Automated program repair as anytime algorithms” In Proceedings of
the 43rd IEEE/ACM International Conference on Software Engineering Workshops
(Automated Program Repair), 2021.

Finally, Chapter 7 concludes this dissertation with important and newly opened re-
search questions that this thesis has shed light on. In addition, we sketch out some ways
to answer these questions.
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1.4 Conventions Used in This Thesis

There are a number of text conventions used throughout this thesis.
Italic

Indicates service names (e.g., libraries.io), code names, filenames, options, and file
extensions,

Small caps
Used for tool names (e.g., Bandit), methodology names, function/method names

Constant width
Package name, Library name, Repository name, Service name, Developers quotes,
commands and program listings, releases/versions
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1.5 List of Publications

International Journals and Magazines

• Ivan Pashchenko, Duc-Ly Vu, Fabio Massacci, Henrik Plate, and Antonino Sabetta.
“(In)secure Last Mile of the Free Open Source Software Delivery” To be submitted
to IEEE Security & Privacy Magazine.

International Conferences and Workshops

• Duc-Ly Vu, Ivan Pashchenko, Fabio Massacci, Henrik Plate, and Antonino Sabetta.
“Typosquatting and Combosquatting Attacks on the Python Ecosystem.” In Pro-
ceedings of the 5th IEEE European Symposium on Security and Privacy Workshops
(WACCO), 2020.

• Duc-Ly Vu, Ivan Pashchenko, and Fabio Massacci. “Please hold on: more time =
more patches? Automated program repair as anytime algorithms.” In Proceedings
of the 43rd IEEE/ACM International Conference on Software Engineering Work-
shops, 2021.

• Duc-Ly Vu, Ivan Pashchenko, Fabio Massacci, Henrik Plate, and Antonino Sabetta.
“LastPyMile: identifying the discrepancy between sources and packages.” In Pro-
ceedings of the 29th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE), 2021.

• Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci. “A qualitative study of depen-
dency management and its security implications.” In Proceedings of the 27th ACM
SIGSAC Conference on Computer and Communications Security, 2020.

Posters and Research Compition

• Duc-Ly Vu, Ivan Pashchenko, Fabio Massacci, Henrik Plate, and Antonino Sabetta.
“Towards Using Source Code Repositories to Identify Software Supply Chain At-
tacks.” In Proceedings of the 27th ACM SIGSAC Conference on Computer and
Communications Security, 2020.

• Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci.“Preliminary Findings on FOSS
Dependencies and Security: A Qualitative Study on Developers’ Attitudes and Ex-
perience.” In Proceedings of the 42nd IEEE/ACM International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion), 2020.
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• Duc-Ly Vu, “py2src: Automatic Identification of Source Code Repositories and Fac-
tors for Selecting New PyPI Packages.” In the 35th IEEE/ACM International Con-
ference on Automated Software Engineering (SRC), 2021 - ACM Silver Medal.

Publications that are not included in the thesis

• Duc-Ly Vu, Trong-Kha Nguyen, Tam V Nguyen, Tu N Nguyen, Fabio Massacci, and
Phung H Phu. “HIT4Mal: Hybrid image transformation for malware classification.”
Transactions on Emerging Telecommunications Technologies, 2020.

• Duy-Phuc Pham, Duc-Ly Vu, and Fabio Massacci “Mac-A-Mal: macOS malware
analysis framework resistant to anti evasion techniques.” Journal of Computer Vi-
rology and Hacking Techniques, 2019.

• Duc-Ly Vu, Trong-Kha Nguyen, Tam V Nguyen, Tu N Nguyen Fabio Massacci, and
Phung H Phu. “A convolutional transformation network for malware classification”
In Proceedings of the 6th NAFOSTED conference on information and computer
science (NICS), 2019.
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Glossary

Artifact also known as published artifact, a software entity that contains all necessary
items (e.g., files) to run the software and can be installed or directly used by project
consumers. Typically, they are produced by the build process [93]. In Python,
built distributions (e.g., Wheels) are generated from the source distributions (e.g.,
tarballs) [147].

Correct patches A program edit is marked as a correct patch, if it semantically fix the
bug. The correctness of a pactch is usually assessed by human.

Dependency a library some functionality of which is reused by other software projects.
Although ‘dependency’ logically relates to a relation, we adopt the term as it is used
(and abused) by software developers [57]. Thus, we can correctly communicate the
meaning of their thoughts delivered in the form of quotations later in the study.

Dependency maintenance access and modification of the source code of project de-
pendencies. Thus, for dependency maintenance, developers typically have to access
the dependency source code repositories (e.g., Github repositories) and contribute
to the dependency projects (e.g., submitting pull requests with new features or bug
fixes.

Dependency management the process of modification of the configuration of a project
by updating (i.e., adoption of new versions of currently used dependencies) or
adding/removing dependencies. To manage dependencies, software developers only
need to modify the own code of their projects.

Library a separately distributed software component, which other software projects
might reuse functionality.
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Package ‘exists to be installed (or deployed)’ [148], and is a collection of pre-built and
versioned artifacts for one or more target environments that is made available to
consumers as an entity. In the remaining thesis, we refer to a package as a package
in the PyPI ecosystem if not otherwise stated.

Package Developers/Package Owners developers who are involved in the develop-
ment of a library or package for others to use.

Package repository a place to distribute pre-built packages to consumers.

Package Users/End Users developers who choose packages to include as dependen-
cies.

Phantom a software entity (e.g., files, lines of code) present in an artifact but does not
match the one submitted to the source code repository. We use phantom lines to
refer to lines of code and phantom files to refer to entire files.

Plausible patches A program edit is marked as a plausible patch, if it passes all the
available test cases.

Releases (Versions) A specific version of a package that can be distributed in a package
reposiotry.

Repository a cloud provider with a versioning system to store and access several versions
of a software project.

Source code human-readable instructions that others could check to understand the
functionality of a software project.

Source code repository a place to store and maintain the project source code. From
now on, we use the term for the projects hosted publicly on Github. For Github
services (e.g., Github stars, forks), we use the list of terms available at [62].
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Acronyms

APR Automated Program Repair.

AST Abstract Syntax Tree.

FOSS Free Software Open Source.

LE Large Enterprise.

LoC Line of Code.

NPM Node Package Manager..

OFS OSS Find Source.

OSS Open Source Software.

PyPI Python Package Index.

Regex Regular Expression.

SME Small and Eedium-sized Enterprise.

SRC Source.

UG User Group.
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2
Background

“The most important days in your life are the day you were born and the day
you find out why.”

– Mark Twain

To make this chapter self-contained, we briefly introduce some concepts about the
open-source software supply chain and about the PyPI supply chain in particular.

2.1 General concepts of the software supply chain

The software supply chain involves storing, retrieving, and analyzing software. The
open-source software supply chain can be decomposed into four main components: De-
velopers, Repositories, Package dependency management systems, and End Users [59].
Figure 1.1 shows simplified steps of the software supply chain in the context of this thesis.

In Figure 1.1, developers build the source code using development tools such as IDEs
or debugging tools. For a team, developers collaborate with their peers mainly on a shared
source code repository (e.g., GitHub [63], GitLab [64], Bitbucket [28]). In Figure 2.1, in
development stage, developers can write all the code of a project, or they can fork any
public repository to change locally and evolve the project independently. Note that we do
not consider the ‘fork’ of a Github project in this thesis, and when applicable, we discuss
these limitations in the Threats to Validity section at the end of each chapter.

During the development phase, developers may run automated testing tools to test
the functionality of the project and the absence of security vulnerabilities. Moreover, if
a project is open-source, other developers could access the code, check it, and suggest
improvements. Indeed, the source code repository is often an essential source of infor-
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Figure 2.1: Current Development, Build, Publication and Security Review pipeline of
PyPI packages

mation for the developers to decide on the quality of a delivery artifact (discussed in
Chapter 4) [136]. For example, Github repositories provide various metrics of popularity
(e.g., the number of watchers, forks and stars), activity of a project (e.g., number of
releases and commits). We discuss those metrics in more detail in Chapter 4.

In Figure 2.1, when developers decide to make the software version available for other
people (i.e., make a release), they move the code to the build stage. At this stage, services
such as Travis CI [184], Jenkins [84], AppVeyor [12], or GitHub Actions [5] use the in-
formation stored in the project configuration files to build it. These tools fetch the source
code of the package and execute the build scripts that collect all the necessary dependen-
cies, add package metadata, generate code (e.g., Swagger Codegen [179]), and create
artifacts that are ready to be distributed, like source archives, Linux, or Windows bina-
ries, test coverage logs, and documentation. At this stage, some can download the source
directly from the source code repository and recompile it in their own environments.

In Figure 2.1, developers may want to publish a built artifact to a package repository
(e.g., PyPI [150], npm [125], Maven Central [124]) either manually or automatically by
using the build tool from the packaging stage. Much of the complexity of using pack-
ages is delegated to a utility program called a package manager or package dependency
management system (Figure 1.1). End users (of the package) typically use the software
version stored and published via package repositories. They typically provide the name of
a package to a package manager tool (e.g., pip [150], or npm [125]) to install the package
from the package manager. The package manager tool merely looks for the package in
the package repository by its name, identifies and resolves its dependencies, downloads all
the required components, and installs them on the end user’s computer. Various package
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Package Owners (400K) Package Users

Administrators

less than 10 people

30TB/day

Nurse

Moderators

Upload project

Maintain project Install project

Ban project
Remove package

Figure 2.2: Roles and responsibilities in the PyPI ecosystem.1

managers differ in their mechanisms to handle the web of dependencies and their secu-
rity. We discuss the security mechanisms of the popular package dependency management
system for Python packages in Chapter 5.

After delivering software artifacts to end-users, during the maintainance phases, if
there are software bugs or vulnerabilities that appear in the project, developers or main-
tainers are responsibly fixing them. Given many dependencies in a software project, there
are repetitive bugs, and here automated program repair (APR) tools could help resolve
the vulnerabilities. APR techniques allow developers to fix bugs proactively, preventing
their software projects from the vulnerability chains. We provide a preliminary assessment
of APR techniques in Chapter 6.

2.2 The Python Package Index (PyPI) ecosystem

PyPI is a popular repository of Python applications or packages: as of February 2022,
it hosts more than 358 200 projects, and the total number of downloads exceeded 126
billion times in the year 2021. PyPI is maintained by a group of developers called Python
Packaging Authority (PyPA for short). Figure 2.2 provides an overview of different roles
envisioned by PyPI: End Users, Package Owners, PyPI Moderators (PyPA), and PyPI
Administrators (PyPA).

Package Users provide the name of a package to a package manager tool, like pip [149]
to install the package from PyPI. Although pip does everything automatically for in-
stalling a package, it neither requires user authentication nor performs any validation of
the package. Instead, pip merely looks for the package in PyPI by its name, identifies

1Data collected from pypistats.com on Feb 15, 2020
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and resolves its dependencies, downloads all the required components, and installs them
on the Package User’s workstation.

Package Owners can distribute code on PyPI using the tool called setuptools [151]
that packs the original source code and generates a local distribution that is either in
a source or built format [147]. Package owners register a package name on PyPI and
publish the distribution artifacts of the package. If Package owners have provided both
distribution types, pip prefers to install the built distribution first. Publishing a package
on PyPI is restricted to Package Owers, who can later modify (e.g., update a new version)
existing packages that they have access to.

PyPI Administrators and Moderators have exclusive rights to ban or revoke packages
of Package Owners. For example, if a particular package is reported as malware, the
Administrators will delete the package from PyPI and block the malicious developer. The
Administrators can delete the corrupted package and support the Package Owners in
recovering their access if their package owner credentials are compromised or damaged.

2.3 Qualitative studies about developers’ attitudes and
practice

To better understand the state-of-the-art knowledge on the topic, we looked for it
on the Elsevier Scopus database. We have made two queries as shown in Table 2.1.
The papers published between 2006 and 2019 in Elsevier Scopus database [53] study
developers’ attitudes and report findings on at least one of the code groups identified in
Subsection 3.2.4 and that mention surveys, interviews, case or qualitative studies, etc.

After an initial selection of 159 papers, two researchers individually marked papers as
relevant or not relevant while a third researcher solved ties. We excluded the studies that:

• have different interview targets rather than developers (e.g., business or different
subjects, salesperson) or,

• do not mention software dependencies, at least briefly. This exclusion resulted in
20 papers as shown in Table 2.3.

After a preliminary selection of 159 articles, we narrowed it down to 25 (including
suggestions from anonymous reviewers). To further analyze them, we cluster the papers
into the following groups based on the primary research focus:

• Dependency studies aimed at the qualitative analysis of the impact of dependencies
on the developers’ decision-making;

• Tool/Technique validation studies have the primary goal to validate a certain tool
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Table 2.1: Search queries on Elsevier Scopus database on March 2019
Two researchers compose the search queries and the third research evaluate the queries to decide the final
queries. Irrelevant papers are excluded by manually examining their abstracts and research questions (if
any).

Search Query #Papers Selected
( TITLE-ABS-KEY ( developers ) OR TITLE-ABS-KEY

( programmers) ) AND
( TITLE-ABS-KEY ( qualitative AND stud* ) OR
TITLE-ABS-KEY ( interview* ) ) AND

( PUBYEAR > 2005 ) AND
( LIMIT-TO ( SUBJAREA , COMP ) ) AND

( TITLE-ABS-KEY ( change ) OR TITLE-ABS-KEY
(evol* ) OR TITLE-ABS-KEY (migrat* ) OR
TITLE-ABS-KEY (adopt* )) AND

( TITLE-ABS-KEY ( manage* ) OR TITLE-ABS-KEY
(maint* ) OR TITLE-ABS-KEY ( update* ) OR
TITLE-ABS-KEY ( fix* ) OR TITLE-ABS-KEY (
repair* ) OR TITLE-ABS-KEY ( debug* ) OR

TITLE-ABS-KEY ( find* ) OR TITLE-ABS-KEY (
select* ) ) AND

( TITLE-ABS-KEY ( need* ) OR TITLE-ABS-KEY (
importan* ))

158 27

( TITLE-ABS-KEY ( developers ) OR TITLE-ABS-KEY
( programmers )) AND

( TITLE-ABS-KEY ( qualitative AND stud* ) OR
TITLE-ABS-KEY ( interview* ) ) AND

( PUBYEAR > 2005 ) AND
( LIMIT-TO ( SUBJAREA , COMP ) ) AND

( TITLE-ABS-KEY ( dependenc* ) )

38 6

Total 196 33
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Table 2.3: Summary of qualitative studies about developers’ attitudes and practice
The table presents a summary of qualitative studies of developers’ attitudes and practices by interviews
(I), surveys (S), mailing lists (M), observations of developers’ work process (O). For each study we report
the number of participants and whether the study provided the insights for the code groups used in this
study

.

Dependency studies Tool/Technique validation studies Information needs and decision making
[46] [75] [42] [109][29] [30] [39] [91] [119] [85] [74] [193] [78] [19] [132][166][186][167][96] [139][89] [20] [216] [14] [191] Ours

Type S S O+I S I I I M S I I S+I I I I M I O I I O I O+I S S I
#Partic. 203 14 6,8+15 116 7 28 5 16 62 20 14 42+11 6 6 18 ND 15 25 15 7 17 15 6+6 123 274 25
Deps 3 3 3 3 3 3 3 3 3 3 3 3

Lang 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Attitude 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Context
Function.

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Context
Security

3 3 3 3 3 3 3

Issues 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Operation 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Process 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

or a technique;
• Information needs and decision-making the reasoning and motivations behind vari-

ous decisions that developers make during the software engineering process.
Table 2.3 presents a summary of qualitative studies of developers’ attitudes and prac-

tices. We identify the following sources of information used by the selected studies: in-
terviews, surveys, mailing lists, observations of developers’ work process. Then, for each
study, we report the number of participants and whether the study provided the insights
for the code groups identified (see Subsection 3.2.4 for more details).

2.4 Dependency Management Issues and Mitigations

Many empirical studies [9,33,39,79,88,91,95,107,133,140,141,213] investigate the topic
of security vulnerabilities introduced by software dependencies. Cox et al. [39] introduced
the notion of “dependency freshness” and reported that fresh dependencies are more likely
to be free from security vulnerabilities. However, various studies of different dependency
ecosystems, i.e., Java [91,133], JavaScript [79,88,213], Ruby [88], Rust [88], etc., provide
the evidence that developers often do not update software dependencies.

Derr et al. [46] surveyed Android developers to identify their library usage and require-
ments for more effective library updates. When updating their app libraries, developers
consider bug fixing the most critical reason while security plays a minor role. Developers
are wary of updating their dependencies if they work as intended. A follow-up quantitative
study [82] found that the most likely reason that stops developers from updating depen-
dencies are breaking changes due to deprecated functions, changed data structures, or
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entangled dependencies between different libraries and even the host app. However, lim-
ited insights are provided on the developers’ motivations for updating either functionality
or security). Moreover, since the study presented the findings from the Android ecosystem
that does not have a central dependency management system, like Maven Central, npm,
or PyPI, the results might not generalize to the developers of other ecosystems.

Considering the ecosystems that have a centered dependency management system,
Haenni et al. [75] reported the impact of changes to be one of the leading developers’
concerns when updating their dependencies. Later, Bogart et al. [29] observed that de-
velopers often find it challenging to be aware of potentially significant changes to the
dependencies of their projects and prefer to wait for the dependencies to break rather
than act proactively about them. Their later study [30] shows that breaking changes
are the main factor that prevents developers from updating their project dependencies.
Also, the authors observed that developers sometimes do not update their dependencies in
their projects even though their company’s policy recommends this. However, the studies
considered only the effect of functionality issues introduced by dependencies and did not
consider the impact of security concerns.

Kula et al. [91] is the only paper to study the influence of security advisories on
dependency updatability we are aware of. The authors found no correlation between the
presence of security advisories and dependencies update on FOSS projects in Github. An
anecdotal survey of developers showed that some were not aware of security advisories
and existing security fixes. However, the authors only surveyed FOSS developers who
did not update the dependencies of their projects. Therefore, the reported results might
not generalize when applied to all developers (e.g., enterprise developers). Also, the study
reported no in-depth qualitative analysis (e.g., no coding, publishing only some quotations
from email responses). Moreover, a recent quantitative study in Maven by Pashchenko et
al. [133] suggested that the results presented in [91] might be affected by false positives
as the authors considered vulnerable dependencies used only for testing purposes.

Summary: Current qualitative dependency studies suggest that dependency issues might
affect developers’ decisions. However, the studies focus mainly on functionality issues and,
therefore, provide limited insights on whether security concerns have any impact on the
developers’ decisions for the selection of new dependencies to be included in software
projects (Subsection 3.3.1), their further management (Subsection 3.3.2), and how devel-
opers mitigate bugs and vulnerabilities in case there is no fixed version of a dependency
available (Subsection 3.3.4).
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2.4.1 Technologies/tools for automating processes of the software
development process

Several papers studied the adoption of static analysis tools that allow developers to
identify both functionality and security issues in the own code of their software projects.
For example, Vassallo et al. [193] investigated the impact of the development context on
the selection of static analysis tools. Tools are adopted in three primary development
contexts: local environment, code review, and continuous integration. However, John-
son et al. [85] identified that lack of or weak support for teamwork or collaboration, a
high number of false positives, and low-level warnings are the main barriers that prevent
developers’ adoption. These studies clarify some issues that developers face while using
automated tools. However, the findings might not apply to the developers’ perceptions of
using dependency analysis tools that do not actually analyze code.

Mirhosseini and Parnin [119] is the only study that analyzed how developers use depen-
dency analysis tools. The authors quantitatively studied whether automated pull requests
encourage developers to update their dependencies: projects that used automatically gen-
erated pull requests or badges updated dependencies more frequently, but developers also
ignored almost two-thirds of such pull requests due to potential breaking changes. As
the study considered functionality aspects, we do not know whether security may change
the developers’ reactions to automated notifications. The study focused on JavaScript
developers who used the tool called greenkeeper.io [70] as a dependency management
tool, so its findings might not apply to other dependency management tools.
Summary: The qualitative studies of technologies/tools for automating the software
engineering process report exciting observations regarding the developers’ experience, but
the studies that involve dependency analysis tools focus primarily on functionality aspects
and, therefore, provide limited insights on how developers can use them to discover and
mitigate security issues introduced by software dependencies (more discussions can be
found in Subsection 3.3.3 and Subsection 3.3.4).

2.4.2 Information needs and decision making during software de-
velopment

Several studies [20, 75, 89, 91, 96, 139, 166, 167] describe the information needs and
decision-making strategies of industrial software practitioners. For example, Unphon and
Dittrich [186] observed that the architect or key/lead developer plays a central role in
designing and revising software architecture. Pano et al. [132] reported that a combina-
tion of four actors (customer, developer, team, and team leader), performance size, and
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automation drive the choice of a JavaScript framework. Again, these papers capture en-
terprise developers’ information needs and behavioral patterns but do not report security
concerns on decision-making preferences.

Assal and Chiasson [14] surveyed software developers to study the interplay between
developers and software security processes. The authors observed that the security effort
allocated to the implementation stage is significantly higher than in the code analysis,
testing, and review stages. Although the paper provides a good insight into human
aspects of developers’ behavior towards their own code, it does not tackle third-party
dependencies (i.e., other people’s code).

Linden [191] studied the developers’ perception of security in various development
activities, both with surveys and in a laboratory exercise. The authors found that de-
velopers mainly consider security in coding activities, such as writing code or selecting
external SDKs. However, the study provides limited insights into developers’ reasoning
while working with dependencies. Moreover, the findings are reported based on observing
and surveying only Android developers and, therefore, might not apply to other develop-
ment environments, especially those with a central dependency management system, like
npm or PyPI.
Summary: The studies on information needs provide valuable insights on developers’
decision-making strategies. However, the existing studies do not show how the developers’
actions and decisions change in the presence of security issues introduced by software
dependencies (see our findings in Subsection 3.3.1 and Subsection 3.3.2).

2.5 Quantitative studies on software dependencies

2.5.1 Selection of software dependencies/libraries

The library (dependency) selection is often assigned to skilled developers or software
architects [136,186], or the combination of developers, customers, teams, and team lead-
ers [132] in the decision-making process. For brevity, in this thesis, we refer to the people
who perform an actual selection of dependencies for software projects as developers.

Various qualitative studies report different factors that developers and/or software
architects said to consider while selecting software libraries for their projects, such as
technical (e.g., usability), human (e.g., popularity) [136, 191], or legal (e.g., license) fac-
tors [94]. For example, licensing is a critical concern as it may introduce legal issues [136]
for using third-party code [191], and developers often have a limited understanding [191].
Another important developers’ concern when selecting an external library is its secu-
rity [191]: the effort allocated to the implementation stage is much higher than in the
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code analysis, testing, and review stages [14].
To select a dependency, developers can extract various factors from the source code

repository of the dependency to evaluate its quality or attractiveness [32,47,190,219]. For
instance, developers might consider factors like the commit frequency or the time to fix a
vulnerability [136]. The source code repository can also provide a source for checking the
reproducibility of a package [68] or malicious code injections into the packages (Chapter 5).
Source code repositories (e.g., GitHub repositories) may as well store information about
the security issues and fixes of the project [158] which could support developers in choosing
the well-maintained project and has the security issues fixed fast [136].

When selecting a library, developers might also use the information provided by other
services, such as the service libraries.io provides aggregated statistics about packages
(e.g., top packages providing similar functionality along with their number of downloads).

On the other hand, although existing research [94, 136] has successfully attempted to
provide various factors that influence developers’ decisions for selecting libraries, they did
not offer large-scale, quantitative perspectives on the factors.
Summary: For dependency selection, developers often rely on various factors extracted
from the source code repositories of the libraries. However, the considered factors for the
dependency selection are often identified qualitatively, while quantitative validation of the
identified factors is limited (Subsection 4.5).

2.5.2 Finding source code repository URLs that correspond to
PyPI packages

While developers usually download and install a package from a package repository
(e.g., Maven Central), they often examine the source code repository of that package when
deciding whether include it in their project. Github, a massive worldwide software archive,
provides various services to support developers to support developers in selecting libraries
and maintaining the libraries, such as the activity of a package (number of releases and
commits) or overall user engagement (Github stars, forks, contributors).

Various tools, such as fosstars-rating-core [163], criticality_score [131], and
openssf security metrics [58] profile a GitHub repository of a package to automat-
ically provide various factors for open-source projects. However, these tools require the
source code repository URL of a package that package repositories (e.g., npm or PyPI)
do not require developers to declare. On the other hand, the declared GitHub URL of a
particular package might be outdated, leading to a not existing page or even a different
GitHub page [34] (see Example 2.3).

In practice, developers often report that they look for the source code repositories of
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the prospective dependencies of their projects manually [72,94,136]. Researchers typically
take a similar approach [68] by assuming the links to GitHub repositories exist without
revealing their Github URL discovery methodology. However, even though the manual
finding of GitHub URLs is the most precise approach, one would need significant resources
to scale it to all packages in the package repository. Moreover, library developers might
decide to update the source code repository of their package (e.g., to change the organi-
zation of a GitHub repository). As a result, extensive human effort would be needed to
maintain the collected list of GitHub URLs corresponding to PyPI packages up-to-date.2

The current source code finding approaches typically rely on the metadata information
present in the PyPI page of a package to automatically extract GitHub URLs of the
packages [190,200,201]. However, such an approach might produce an insufficient number
of GitHub URLs for many packages. For example, 1104 out of the top 4000 popular PyPI
packages in our sample do not have a GitHub URL in their metadata (Table 4.7).

Microsoft OSS Find Source [118] (We use OFS as its abbreviation in Chapter 4) is
the only open-source tool that we are aware of, capable of automatically finding Github
URLs for PyPI packages. However, by studying the tool’s implementation, we found that
the tool also relies on the information present in the package metadata. For example,
on the dataset of the top 4000 most downloaded PyPI packages, this method returned
3369 URLs (84%) (see Subsection 4.3 for details). Moreover, OFS does not provide any
supplementary indicators (as provided by our approach py2src in Chapter 4) to evaluate
the reliability of the reported URLs.
Summary: Most tools require a source code repository URL as a manual input to produce
quality and popularity metrics for a project. OFS (the only existing tool to automatically
extract the Github URL of a package) does not provide any reliability information of its
findings (Subsection 4.4).

2.6 Discrepancies between Sources and Packages

2.6.1 The last mile from source to package

The most recent attention regarding securing the software supply chain has focused
on the first element (the developers) or the last part (the end users). Most of the steps
(development and build and distribution in Figure 2.1) in the PyPI software supply chain
align with the chain described in Subsection 2.1. Hence, we only discuss the last stage
that is specific to the PyPI ecosystem.

2To the best of our knowledge. Currently, there is no such dataset available.
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Figure 2.3: GitHub tags and PyPI releases of SeleniumLibrary

To recap, Figure 2.1 shows a typical package process of releasing an artifact of a Python
package in PyPI that consists of three main stages: development, build and distribution,
and security review.Uploaded artifacts need to go through the security review stage of
a package repository. For example, in the PyPI ecosystem, PyPI administrators run
multiple checks (see Subsection 2.7.1) on uploaded artifacts. The checks will generate a
verdict if an uploaded artifact contains suspicious behavior. The administrators are then
reviewing the verdicts to decide to keep the artifact.

The match between the source code version of a project and the packages that corre-
spond to that version is taken for granted [136]. However, several tools (and humans) are
involved at different stages of the pipeline (Subsection 2.1), and some actions may result
in a published artifact containing code that is not present in the source code repository.

During the packaging stage, building tools add metadata files and augment existing
code files (e.g., setup.py) with information [3], such as license, timestamp [146], release
version. Developers also use code generation tools such as Swagger Codegen that au-
tomatically generate code files (e.g., server stubs and client SDKs for APIs). Developers
may also change the code of a published artifact directly to backport a bug or a vulner-
ability fix [201]. As a result, developers’ actions might create difficulties to connect the
distributed artifacts and their source code repositories, as demonstrated in Figure 2.3.

The discrepancies in the code hosted on Github and the code hosted in a package
repository may be due to malicious action. For example, Table 2.4 shows the modified
files in both legitimate PyPI packages: requests and Flask and malicious packages
request and urlib3. Both kinds of packages differ from the source code repositories.
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Table 2.4: Discrepancies in files of legitimate and malicious typosquatting packages
Distrib shows the number of lines of code that are not present in the source code repository for the requests
and Flask legitimate packages as well as the difference between the malicious packages request and urlib3
from the original legitimate source code repositories of the benign packages (the targets) reported at [169]

Filepath Number of Lines of code
Source +Distribution

requests-1.2.2/requests/models.py 687 +5
Flask-0.5.2/flask/templating.py 88 +2
urlib3-1.21.1/setup.py 174 +23
request-1.0.117/hmatch.py 27 +81

Summary: Differences between the source and package repositories may be due to ‘nor-
mal’ activities (refer to Subsection 5.4 for more details).

2.6.2 Software supply chain attacks on package repositories

Software supply chain attacks occur when malicious or vulnerability is injected into
different stages of the software development chain [80,102] (described in Subsection 2.1).
Weaknesses exist at all steps leading to several incidents such as package hijacking, package
typosquatting, and backdoor planted in source code or updates.

Zimmermann et al. [221] study security risks for users of npm, including potential
vulnerable and malicious code in third-party dependencies. The authors showed that npm
suffers from single points of failure in which individual packages could impact large parts
of the entire ecosystem. Attackers could compromise a minimal number of maintainers’
accounts to inject malicious code into most packages.

Ohm et al. studied several attacks on different package ecosystems [129] (e.g., npm,
PyPI) and found hijacking and typosquatting attacks to be the most common. Compro-
mising the package owner’s credentials would allow attackers to inject malicious payloads
into the existing artifacts so that users will download and install them. Some examples
of attacks are the injection of backdoors into the PyPI ssh-decorate package [1], Ruby
rest-client package, or npm even-stream package [69]. On the other hand, attackers
could commit malicious code directly into a source code repository of a package [65,142].

Package name *-squatting attacks are more prevalent than package owner hijacking
attackers [129]. In typo- and combosquatting attacks [129, 201] adversaries inject a ma-
licious payload into the code of a popular package. Then they release this new package
with a name nearly identical to the name of the original package to trick package users
who mistype the package name and install the malicious one. This attack becomes es-
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pecially attractive considering the limited automatic controls integrated into the package
publishing process, and the certain unbalance concerning the number of package users
and PyPI Administrators/Moderators (40K to 1 as depicted in Figure 2.2) [207].3

EXAMPLE 1. A typosquatting PyPI package urlib3 [169] impersonated the popular pack-
age urllib3 [187]. urlib3 contains malicious code to exfiltrate user information to a re-
mote server. The malicious package urlib3 has a single release urlib3-1.21.1.tar and
the same Github URL as the popular package urllib3 [189].

Summary: Malicious packages are primarily spread via package names squatting and
account hijacking attacks. Attackers can inject malicious code or restore vulnerable code
for later exploitation when a package is installed.

2.7 Malware detection in package repositories

Several attempts were made to identify the typo- and combosquatting packages present
in the package managers [22, 176, 185, 201]. These works([181, 201]) study the potential
impact of typosquatting attacks on PyPI packages based on the Levenshtein distance and
number of downloads of the targeted package. For instance, using the Algorithm 2.4 we
can detect fifteen out of the 28 squatting attacks in Appendix 8.8 are identified by setting
the distance threshold of one. Increasing the threshold to two allows us to capture six
additional attacks (21 out of 28). Our study [201] shows a large number of typosquatting
candidates in PyPI that PyPI Administrators should investigate. However, relying only
on package names may cause many false alerts, and a more in-depth analysis of distributed
artifacts is required for verifying those alerts [201].

Garrett et al. [54,60] use an anomaly detection-based approach on features extracted
from packages’ metadata and source code to detect suspicious package updates in npm.
The method could reduce the review effort by 89%. However, the approach does not
highlight the code injections with the existing features as it analyzes only the published
artifacts. Therefore, a new approach is needed to highlight the code injections and can
be adapted to provide explanations to developers.

Static code-based approaches ([26], [130], [48], [138]) can provide more accuracy in
detecting malicious packages. Several approaches scan the setup.py file of a distributed
artifact to identify suspicious code. Bertu [26] statically parses the Python installation

3Data collected from PyPI [150] on Feb 2020.
4To simplify the algorithm, unspecified paths all lead to the legitimate packages which are not required

inspection.
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Figure 2.4: Detecting suspicious squatting packages (Vu et al. [201]).4

script setup.py as an AST tree and looks for suspicious patterns (e.g., network connec-
tions). Malware Checks uses a set of Yara rules on the lines of code on the setup.py file.
Similarly, ApplicationInspector and OSSGadget [118] check the distributed arti-
facts using a set of regular expressions to identify potential backdoors within a package.
Although these approaches are fast and straightforward, they can generate many false
alerts when scanning setup.py performing legitimate behavior in the installation process
(e.g., downloading a dependency from a remote server). A viable solution is to enable
these tools to scan only the lines that are not present in the source code repository and
which were potentially introduced by either developers or attackers.

Several approaches use dynamic analysis to expose the malicious behaviors of the
package. Unlike static analysis techniques, dynamic analysis tools rely on running the
package’s code to observe their behavior. For example, the tool Buildwatch [130] dy-
namically executes package code using the Cuckoo malware sandbox [56] and captures
all system calls, such as kernel services requested by processes. Duan et al. [48] propose a
hybrid approach, called MalOSS, which extracts various features of distributed artifacts
using metadata, static and dynamic analyses. These methods, however, are resource-
heavy which may be challenging to integrate into the development pipeline. We need a
lightweight detector to help these approaches reduce the number of files and lines that
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need to be scanned to detect malicious code injections, making the existing techniques
efficiently adapt to individual developers’ development pipelines.
Summary: Although current approaches on auditing packages caught some malicious
examples, their focus is on detecting malicious patterns in published artifacts, which
may cause many false alerts. Also, scanning the whole code of an artifact would not be
effective in code injection attacks where only a small subset of code is malicious. Instead,
our approach in Chapter 5 focuses on detecting code injections in distributed artifacts,
thus complementing the current techniques by reducing the number of code lines to be
analyzed to detect software supply chain attacks (Subsection 5.2).

2.7.1 Detecting malicious PyPI packages

To demonstrate a security vetting process for code published in a package repository,
we choose to analyze the security tools for Python packages because Python is one of
the most commonly used languages and is being used by our developers in Chapter 3.
In addition, Duan et al. [48, 54, 128] provides a comprehensive review of the security
mechanisms for other interpreted languages including JavaScript and RubyGems.

In this thesis, we discuss the PyPI built-in protection called Malware Checks
against malicious packages uploaded to the package repository. To avoid being over-
whelmed by false positives, the current PyPI security review called Malware Checks [204]
scans only the installation script file called setup.py. However, unfortunately, several
known attacks [108, 169] injected malicious code into different files as shown Listing 2.4
and described in the below example. Hence, the review of only setup.py files is not enough.

EXAMPLE 2. The typosquatting package jeIlyfish [108] mimicked the popular package
jellyfish (the first L is an I) to steal SSH and GPG keys [36]. There are two injected
files: setup.py, and _jellyfish.py in the typosquatting package. The malicious code is stored
in the _jellyfish.py as shown Listing 2.4 and then being implicitly called by the package
installer via the packages option in the setup.py file shown in Listing 2.3.

There are other tools in Table 2.5 that support identifying malicious Python packages.
Several scanning tools [26, 48] parse files into abstract syntax trees (AST) and perform
rule-based searches on their nodes. Microsoft’s ApplicationInspector [117] and OS-
SGadget [118] simply detect use suspicious lines of through regular expression (Regex)
match. However, the tool authors mention that their tools generate many false positives
if run on the entire package code [118].

Given that a substantial amount of code in a package is legitimate, this high number of
false positives is to be expected. For instance, consider the code snippets from Listing 2.1
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Table 2.5: Existing tools for analyzing Python packages
Regex bases on the raw lines of code while AST analysis requires transforming the code into a tree. The
hybrid analysis consists of metadata, AST, and dynamic execution of an artifact

Package scanner Detection Granularity Technique used

Malware Checks [204] setup.py file Static (Regex)
MalOSS [48] Package Static and Dynamic
Application Inspector [117] Artifact Static (Regex)
OSSGadget [118] Package & Artifact Static (Regex)
Ohm et al. [128] Artifact Static (AST)
Bertu [26] setup.py file Static (AST)

and Listing 2.2. Both code snippets use the b64decode function from the base64 library.
Listing 2.1 is a malicious fragment that collects the user information and sends it to a
remote server via a network socket, while the code in Listing 2.2 simply decodes a (benign)
certificate. A package checking tool that consider the b64decode function as suspicious
since it is often used in malicious packages will produce a true positive for Listing 2.1 and
a false positive for Listing 2.2. Unfortunately, the b64decode function can be widely used
for legitimate purposes, and the tool will generate many false positive alerts as it has no
way to distinguish between benign and malicious usage without further analysis.

# Establishing a socket connection to a remote server
s = socket.socket(socket.AF_INET , socket.SOCK_STREAM)
rip = ’M’ + ’TIxL’ + ’jQyL’ + ’jIx’ + ’N’ + ’y4’ + ’0NA’ + ’==’
# Sending the encoded data via the established socket
s.connect (( base64.b64decode(rip), 017620))

Listing 2.1: Malicious code exfiltrating information via a networking socket

# Decoding a bundle of certs in PEM format
der_certs = [
base64.b64decode(match.group (1))
for match in _PEM_CERTS_RE.finditer(pem_bundle)
]

Listing 2.2: Legitimate b64decode call in the urllib3 package

# process all pure Python modules found in 'jeIlyfish '
packages =['jeIlyfish ']

Listing 2.3: Invoking malicious code in the installation file jeIlyfish-0.7.1/setup.py
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ZAUTHSS = PAYLOAD
# Decoding and executing the obfuscated payload
ZAUTHSS = base64.b64decode(ZAUTHSS)
ZAUTHSS = zlib.decompress(ZAUTHSS)
exec(ZAUTHSS)

Listing 2.4: Malicious code injected into the file jeIlyfish-0.7.1/jeIlyfish/_jellyfish.py

Summary: If scanning one file in a package is feasible but not enough and reviewing an
entire package is unfeasible due to the high number of false positives, a different solution
is needed (skip to Subsection 5.5 for the solution).

2.7.2 Reproducible builds as an ideal solution

Reproducible builds [43] is a set of development practices that create an independently
verifiable path from source to published artifacts. They could be the ideal solution to
verify that no vulnerabilities or backdoors have been introduced during the build process.
Given the source files (e.g., source code, build scripts), the reproducibility builds identical
binary under pre-defined build environments. This technique prevents attacks against the
built environment to produce packages with backdoors [156].

In practice, to achieve the reproducibility of the build process, we must eliminate
varying elements in release pipelines. For example, builds should not include any CPU,
timestamp, or locale information in distributed artifacts [68]. Hence, reproducible builds
require a significant overhaul in the language-based package managers such as PyPI or
npm [3, 68] because current release pipelines augment packages with more information,
such as metadata, debug data, or automatically generated code files (See Subsection 2.6.1).

Some free software distributions, such as Debian, have procedures to identify the
original source code and a different file that includes all changes made specifically for
Debian, including all files related to packaging [92]. However, after trying for seven years,
Debian states that “it is a stretch to say that Debian is reproducible” [44].
Summary: Reproducible builds are challenging to achieve given the diversity of packag-
ing tools and current implementations of the release pipeline (e.g., embedding timestamp
or compiler traces in built artifacts).

2.8 Automatic repairing bugs in software dependencies

Developers are reported to be less proactive about dealing with (functionality) bugs in
their dependencies. Sometimes developers decide to do nothing with their own project but
wait for the fixed version of the dependency [109,136]. Automatic bug fixing or suggestions
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techniques [61, 120] have been developed to relieve developers’ burden in coping with
software bugs and, specifically, vulnerabilities. While automatic fixing techniques provide
a complete patch that is intended to work, fixing suggestions provide partial solutions
that may need to be revised by developers before its adoption into the codebase.

Given a buggy project and a set of test suites, automated program repair tools first
try to localize potential faults and apply mutations to the source code until the program
passes all unit test cases. Unfortunately, the generated patches, which are called plausible
patches are not necessarily correct due to the limitation of the bug oracle [106,111]. Recent
research focuses on the correctness of plausible patches by manually comprehending the
patches or comparing them with the human patches.

The mutations vary in different APR techniques ranging from small changes like mod-
ification, addition, or deleting a single code line to complex patterns such as add an ‘if’
and then ‘throw exception’ mined from source code repositories [115]. In addition, there
are specific bug fixing patterns shared between software bugs and vulnerabilities. By
understanding what APR techniques perform on normal functional bugs, we could adapt
them for software vulnerabilities. For example, some vulnerabilities could be fixed by
adding an ‘if’ statement or changing the variable type, leading to infinite loops.

One of the requirements of an APR tool to be adopted by developers in their devel-
opment pipeline is that the tool should be efficient and provide patches or suggestions in
a reasonable time.
Summary: Current evaluations of automatic program repair (APR) techniques focus on
tools’ effectiveness, while little is known about the practical aspects of using APR tools,
such as time budgets to provide a patch for developers.
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3
A Qualitative Study of Dependency
Management and Its Security Implications

“One particularly challenging aspect of dependency management is security.”
– Nadia Eghbal

Several large-scale studies on the Maven, npm, and Android ecosystems point out that
many developers do not often update their vulnerable software libraries, thus exposing the
user of their code to security risks. In this chapter, we qualitatively investigate the choices and
the interplay of functional and security concerns on the developers’ overall decision-making
strategies for selecting, managing, and updating software dependencies. We run 25 semi-
structured interviews with developers of both large and small-medium enterprises located in
nine countries. All interviews were transcribed, coded, and analyzed according to applied
thematic analysis. They highlight the trade-offs that developers are facing and that security
researchers must understand to provide practical support to mitigate vulnerabilities (for ex-
ample, bundling security fixes with functional changes might hinder adoption due to a lack of
resources to fix functional breaking changes). We further distill our observations to actionable
implications on what algorithms and automated tools should achieve to effectively support
(semi-)automatic dependency management.

3.1 Goal and Research Questions

Vulnerable dependencies are a known problem in the software ecosystems [91, 133],
because free and open-source software (FOSS) libraries are highly interconnected, and
developers often do not update their project dependencies, even if they are affected by
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known security vulnerabilities [46,91].
A handful of studies report that developers do not update dependencies in their

projects since they are not aware of dependency issues [29] or do not want to introduce
breaking changes in their projects [30, 75]. Although functionality and security appear
to be essential factors affecting developers’ decisions [14], those studies mainly focus on
functionality aspects and, therefore, provide limited insights on the impact of security
concerns on developers’ reasoning.

Other studies also show this tension between functionality and security. For example,
on the Android ecosystem, mobile app developers do not consider security as the top-
priority task [46]. A later study by the same group [82] explained the reason behind it
as a significant clash with functionality: the ‘easy’ updates would break around 50% of
dependent projects.

A key observation is that several of those studies are about ecosystems that do not
feature a central place for storing and managing app dependencies. Developers with a
central dependency management system, like Maven, npm, or PyPI might have a very
different approach to their projects’ dependencies.

For example, an initial quantitative study of the Maven ecosystem [91] analyzed more
than 4600 Github repositories and provided yet another evidence that developers keep
their project dependencies outdated. However, a later study [133] showed that several of
the reported vulnerabilities were in test/development libraries (i.e., not shipped with the
product) and, therefore, irrelevant. So, not updating the library was not due to a breaking
conflict with functionality but a perfectly rational decision.

The goal of our study is to provide a sound qualitative analysis of the motivation of
developers between the rigid format of surveys (e.g., [46]) and the anecdotal examples
that complement quantitative studies on dependencies (e.g., [91]).

Following the process of semi-structured interviews, we have investigated the following
research questions:
RQ1.1: How do developers select dependencies to include into their projects, and where

(if at all) does security play a role?
RQ1.2: Why do developers decide to update software dependencies, and how do security

concerns affect their decisions?
RQ1.3: Which methods, techniques, or automated analysis tools (e.g., Github Security

Alerts) do developers apply while managing (vulnerable) software dependencies?
RQ1.4: Which mitigations do developers apply for vulnerable dependencies with no fixed

version available?
In summary, this chapter makes the following contributions:
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• qualitative investigation of the choices and the interplay of functional and security
concerns on the developers’ overall decision-making strategies for selecting, manag-
ing, and updating software dependencies

• possible implications for research and practice to help improve the security and the
support of (semi-)automatic dependency management.

Our qualitative study is based on semi-structured interviews with 25 enterprise de-
velopers, who are involved in the development of web, embedded, mobile, or desktop
applications. Some interviewees also create their own libraries (i.e., supply dependencies
to other projects) but, to keep focus, our interviews investigated their role in the demand
of libraries. The interviewees have at least three years of professional experience in vari-
ous positions, from regular developers to company CTOs, including a Java Users’ Group
coordinator and a lead developer of a Linux distribution. They come from 25 companies
located in nine different countries.

Each interview (lasting 30 minutes on average) was recorded and transcribed. The
transcripts were anonymized and sent back to the interviewees for confirmation. Each
conversation was then coded along the lines of applied thematic analysis to provide a
quantitative assessment of the collected qualitative data. We give an example of our
interview transcript in the Appendix 8.5.

This study illustrates the insights with quotations from the interviewees to better grasp
developers’ reasoning while managing software dependencies and how security concerns
affect their decisions. As this is a purely qualitative study, the presented findings may
not necessarily generalize to other ecosystems, and the proposed implications encourage
additional investigations to confirm their validity. After completing the analysis, we
returned the overall findings to the participating developers to check that we had not
misinterpreted their thoughts.

3.2 Methodology

Our goal is to study the developers’ perceptions of software dependencies and the
effect of security concerns on their decisions. Online surveys or controlled experiments
force the investigator’s point of view on the arguments of interest and may blur the
developers’ opinions. Instead, semi-structured interviews suited best for our goals [217].
Being open, they allow new ideas to be brought up during the interview as a result of
what an interviewee says, and it is indeed used by most of the selected studies (15 out of
22 studies in Table 2.3).

Table 3.1 shows the descriptive statistics of the number of participants in the papers
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Table 3.1: Descriptive statistics of the number of interview participants in the selected
papers
Note, that we do not report the data for the mailing lists study type, since we have participants number
only for one study: Kula et al. [91] involved 16 developers in their study, while Sharif et al. [166] studied
mailing lists from six FOSS projects but did not report the number of participants.

Number of Studies Number of Developers
Study type µ σ median Q25% Q75%
Interviews 16 12.1 6.4 12 6.8 15
Surveys 7 119.1 92.5 116 52 163
Observations 3 8.7 6.4 6 5 11

discussed in Section 2.3. We observe that an interview-based study, on average, employs
13 developers. At the same time, 75% of the selected papers report results from less than
17 interviews. Moreover, the studies typically report interview results from developers of
a single company or the same community of developers. These interviews may potentially
introduce bias since developers may share same development strategies and approaches.

3.2.1 Recruitment of participants

As a source for finding software developers, we referred to local development communi-
ties. First, we used the public channels for these groups to post our call for interviews and
contacted their reference people. Then we applied the snowball sampling approach [66]
to increase the number of interviewees by asking the respondents to distribute our call
within their friends and other development communities they are involved in. To overcome
the potential bias of the snowballing approach, for our interviews, we selected developers
with various roles and responsibilities, each representing a different company and often a
different country.

In our study, we recruited enterprise developers working in at least one of the following
programming languages: C/C++, Java, JavaScript, or Python. The interviewees have
at least three years of professional working experience (with more than ten years for six
developers) and held various positions, spanning from regular and senior developers to
team leaders and CTOs. Some of the participants are involved in internal/corporate
development, while others work on the web, embedded, mobile, or desktop applications.
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Table 3.2: Interviewees in our study
The table describes interviewees in our sample. We report positions, professional experience, and primary
languages as communicated during the interviews. By location, we specify the current country of the
developer workplace. We have clustered the companies as follows: free and open-source project (FOSS
project), large enterprise (LE), small and medium-sized enterprise (SME), and user group (UG).

# Position
Company

type
Country

Experience
(years)

Developer
type

Primary
languages

#1 CTO SME DE 3+ Web Python, JS
#2 Moderator UG IT 10+ Web Java
#3 Developer LE IT 10+ Web Java, JS
#4 CEO SME SI 7+ Web/Desktop Python, JS
#5 Developer SME NL 3+ Web/Desktop Python
#6 Freelancer SME RU 3+ Mobile Python, JS
#7 Developer SME DE 5+ Web/Desktop Python, JS
#8 Developer LE RU 4+ Web Python, JS
#9 CTO SME IT 4+ Web JS
#10 Developer LE DE 10+ Embedded C/C++
#11 Developer LE VN 5+ Embedded C/C++
#12 Developer SME DE 4+ Web Java, Python
#13 Team lead LE RU 10+ Desktop JS
#14 Developer SME RU 4+ Web Java
#15 Project Leader FOSS UK 10+ Embedded Python, C/C++
#16 Developer SME IT 8+ Web Java
#17 Developer LE VN 3+ Web/Desktop Java
#18 Sr. Software Engineer LE IT 10+ Embedded Python, C/C++
#19 Developer SME RU 3+ Web Java
#20 Security Engineer LE DE 3+ Web/Desktop JS
#21 Developer SME HR 3+ Web JS
#22 Developer SME IT 8+ Web JS
#23 Developer LE IT 9+ Web Java
#24 Full-stack Developer SME IT 3+ Web JS, Python
#25 Developer SME ES 3+ Embedded C/C++
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In total, we interviewed 30 developers1 and eventually retained 25 for the analysis
distributed over 25 different companies located in nine countries.2 Table 3.2 summarizes
the key demographics of the interviewees in our sample.

3.2.2 Interview process

To collect primary data, we had interview sessions lasting approximately 30 minutes.
We met in person the interviewees who reside in our city and scheduled remote meetings
with others via the video conferencing services Skype or Webex.

We offered no monetary compensation for the interviewees as the interviewed devel-
opers are highly skilled professionals who are very unlikely to be motivated by the reward
we could offer. Instead, we proposed that they share their expert opinions on the topic
interesting for them. We followed the Ethical Review Board procedure of the University
of Trento for the management of consent and processing of data (See Appendix 8.2). We
explained that all interviews would be reported anonymously, and neither personal nor
company identifiable data would be made available. Also, no personal data was collected.

We adopted the semi-structured interview type for our research and framed our ques-
tions to allow developers to define the flow of the discussion, i.e., followed the “grand tour
interviews” principle [76]. Still, we made sure all interviews included the following parts3

(not necessarily in that order):
• Introduction - interviewer describes the context and motivation for the study;
• Developer’s self-presentation - developer (D) presents her professional experience

and the context of her current activities;
• Selection of new dependencies - D describes the selection and inclusion of new de-

pendencies into her software projects;

1We could have three more developers to participate in our study. They initially agreed to let us
observe their actions while analyzing software dependencies, but then the process got stuck at the stage
of selecting the analysis target. Furthermore, their companies were unwilling to let us study their internal
libraries without a legal agreement in place, while analysis of third-party libraries was not interested by
developers.

2Four interviewees were not confident enough to speak about software dependencies in their projects
since they just came into the company. Another developer said that they do not use software dependencies
due to the company policy. Hence, we discarded five interviews from our analysis.

3After the interviews were completed, two researchers checked that an individual interview contains
all elements mentioned above by coding the interview transcripts with the codes corresponding to each
interview part. Five interviews (#6, #12, #14, #21, #23) do not contain the Usage of some auto-
mated tool for dependency analysis part, since the interviewees mentioned that they perform dependency
management manually.
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• Updating dependencies - D explains the motivations and insights of updating de-
pendencies in her projects, i.e., when it is the right time to update, how often
she updates dependencies, and if there is any routine or regulation regarding the
dependency update process in her company;

• Usage of automated tools for dependency analysis - D describes an automatic tool (if
used) that facilitates the dependency analysis process in her projects and provides
some general details about the integration of this tool;

• Mitigation of dependency issues - D describes how she addresses issues in depen-
dencies (e.g., functional bugs or vulnerabilities);

• Other general comments regarding dependency management - this includes some
general perceptions, comments, or recommendations that D may give on the process
of dependency management and, in particular, about the security issues introduced
by software dependencies.

There were two interviewers at each interview session. Each interviewer had a list of
the interview parts mentioned above and crossed off a part if she subjectively counted it
as discussed. An interview finished as soon as all the parts became crossed.

Each interview was recorded and transcribed. The transcripts were anonymized and
sent back to the developers for confirmation.4 The recordings were then destroyed for
preserving the possibility of identifying the interviewees.

3.2.3 Interview coding and analysis

To analyze the interviews, we have adopted the applied thematic analysis [73]. Fig-
ure 3.1 summarizes our approach. It follows the principle of emergence [71], according
to which data gain their relevance in the analysis through a systematic generation and
iterative conceptualization of codes, concepts, and code groups. Data is analyzed, broken
into manageable pieces (codes), and compared for similarities and differences. Similar
concepts are grouped under the same conceptual heading (code group). Code groups
are composed in terms of their properties and dimensions, and finally, they provide the
structure of the analysis [177].

The first phase of analysis (open coding) consists of collecting the critical point state-
ments from each interviewee transcript; a code summarizing the key points in a few
words is assigned to each key point statement. The interviewees are numbered #1 to #25
(Table 3.2). Two researchers independently followed the “iterative process” described by

4Except for the cases when the developer explicitly told us that she believed us to transcribe everything
correctly and did not want to check the transcript.
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Figure 3.1: Research design of our study

Saldaña [162] to code the transcribed interviews.5 Then they looked together at the re-
sulting codes and agreed on the shared code structure, which was reviewed by a third
researcher not involved in the preliminary coding process. So after each iteration, we had
a complete agreement on the codes and code groups by the three researchers.

Each time we reviewed the resulted codes, we have also performed a check whether
we have achieved a saturation of the reported observations [114], i.e., if the interviewees
discuss the same concepts. After concluding that saturation is achieved, we interviewed
additional developers to control the stability of our observations (Additional confirmation
step in Figure 3.1).

We started the coding process as soon as we had ten interviews. At first, we created
345 quotations and assigned 138 codes to them. During the first six iterations, we were
consolidating both quotations and codes by looking at quotations and merging codes on
close topics. This consolidation resulted in 151 quotations with 28 codes assigned to them.
In the subsequent stages, we have added 15 more interviews, which significantly enlarged
the number of quotations (533 quotations on the 11th iteration). While adding them, we
realized that there was one irrelevant code (Scala),6 so we deleted it. Hence, there were 27
codes on the 10th iteration. Then we have added quotations and codes for the developer
roles (SME, LE, FOSS, or UG developer), which resulted in 31 codes and 574 quotations
on the 11th iteration. Finally, we have added the codes corresponding to the interview
process parts in the last step of the coding process. Hence, we have ended up with four
codes corresponding to developer roles, six codes for interview process parts, and 27 codes

5For coding we have used the Atlas.ti software [15]
6The code Scala was mentioned by only one developer as an example of her subproject
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for developer answers assigned to 829 interview quotes.

To validate our observations and implications, we shared the one-page summary of our
analysis, along with the full version of the study, with the interviewees. Then, we asked
them to validate if the results correspond to their expectations (last step in Figure 3.1).

3.2.4 Final Code Book

To analyze the developer interviews, we introduce the following code groups that tag
a topic of a conversation:

• Dependencies code group indicates that a fragment of a conversation is specific to
software dependencies rather than, for example, to own code of a software project.

• Language code group labels conversations specific to a particular programming lan-
guage (e.g., Java vs. Python) rather than discussions of common issues relevant
to the software engineering process in general. A different code is used for each
programming language (C/C++, Java, JavaScript, Python).

Additionally, we cluster similar topics in the conversations and assign them to the
corresponding code groups as follows:

• The Attitude code group captures a qualitative assessment of a fact reported by
a developer. E.g., a developer expresses her likes, dislikes, or recommendations
regarding particular steps of dependency management.

• The Context code group captures background information about the reported issues,
such as whether an issue relates to functionality or security.

• The Issues code group includes discussions about functionality flaws or weaknesses,
like bugs or breaking changes.

• The Operations code group captures specific modifications of project’s own code
or its dependencies. For example, a conversation fragment discusses dependency
management or dependency maintenance.

• The Process code group captures the presence of established development practices
followed by developers. For example, a conversation fragment describes how a de-
veloper team automates the dependency management of their project.

Table 3.4 summarizes the resulted list of codes in our study while Figure 8.1 in Ap-
pendix 8.4 shows number of code occurrences. Notice that the same sentence may be
labeled by several codes :
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We have a contract that we inform our clients once a month. If we have

discovered vulnerability today, the client would know about it in a month.

Of course, if the vulnerability is not critical. If it is critical, we inform

our client immediately as soon as we gather the information.. (#5)

is associated to codes: dependency management, python (as the developer is talking about
Python), requirements, security.

Table 3.4: Codes used in the study.
The final code book consists of 27 codes grouped into 7 code groups. Figure 8.1 in Appendix 8.4 shows

the frequency of occurrences of the resulted codes.
Code group Code Description Example (Developer’s Quote)
Dependencies dependency operations with depen-

dencies
We are using enough number of
libraries. (#14)

Language

C/C++ discussion specific to
C/C++

[...] with the C++ you have
to include the libraries
yourself. (#10)

Java discussion specific to Java Well, this is a Java story
(#14)

JavaScript discussion specific to
JavaScript

Well, the JavaScript world is
a mess. (#7)

Python discussion specific to
Python

[...] but we are working with
Python. (#24)

like positive assessment If we can apply automation
test, it would be good for us
[...] (#17)

dislike negative assessment [...] but we are also afraid
of its effect on the other
flows. (#17)Attitude

recommendation suggestion of improve-
ments

[...] having a SonarQube
plug-in - it would be great.
(#3)

Context
functionality project functionalities or

features
[...] and we integrated that
functionality in our project.
(#8)

requirements policies or requirements We have a contract that we
inform our clients once a
month. (#5)

security security related statement It’s very complicated to
figure out that your code
has such a vulnerability. (#3)
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broken something not working [...] to avoid all service to
go down. (#9)

bugs programming error de-
scription

Well, bugs of course. (#12)

resources human or time resources I cannot address every
smallest issue [...] (#2)

licenses rights to use software [...] it is difficult to
control compatibility of
licenses (#2)

Issues

fix availability availability of a bug fix Simply we used another library
[...] (#23)

Operations

maintenance changes that involve mod-
ifications of source code

We suggest fixes to the
contributors. (#7)

management changes that involve mod-
ifications of project config-
uration

Every couple of days I would
upgrade all of the packages.
(#15)

dependency selec-
tion

selection of new depen-
dencies

When we select them, we have a
discussion. (#5)

direct deps dependencies introduced
directly

[...] our direct dependency
was Jenkins. (#9)

looking for info check 3rd-party sources
for info

I still go to Github, read
sources[...] (#5)

transitive deps dependencies of depen-
dencies

If you have a transitive
dependency [...] (#3)

automated solutions that automate
software engineering tasks

Thanks to various tools,
bots, which just sit in your
repository[...] (#7)

code tool tool for analysis of quality
and security of code

It produces a report on the []
server. (#3)

Process workflow company practices discus-
sion

[ironically] Yes, we have a
weekly reminder [...] (#5)

dependency tool tool for analysis of quality
and security of dependen-
cies

We are using the [] scanner
and it is the only one[...]
(#20)

manual solving a task without ap-
plication of any automa-
tion tools

We do not use any tools to
check security. (#16)
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3.3 Findings

We have checked whether practices established within development communities af-
fect our findings.7 Considering the per-language code distributions, we observed that
Java, JavaScript, and Python developers shared similar attitudes regarding dependency
management: most frequent codes are management, security, and bugs. Most concerns of
C/C++ developers were on the co-occurrences of these codes with code dislike. Hence,
below we present our findings without distinguishing by programming language.

3.3.1 RQ1.1: Rationale for Dependency Selection

To understand the developers’ rationale for the selection of new dependencies for their
projects and whether security aspects affect their choices, we have studied the developers’
answers simultaneously marked by the codes management and looking for info.

Observation 1: Security is considered for selection if it is enforced by company policy:
some companies have a pool of homegrown or preapproved FOSS libraries, so developers
are encouraged or even sometimes restricted to use them in their projects.

Three of the interviewed developers (#5, #10, #28) directly communicated that they
considered security while selecting software dependencies. However, for them, this was
forced by the policy of their companies: #10 has to use only the dependencies approved
by an internal dependency assessment tool that as well ensures that the libraries are
secure, while #5 checks the security history of a library in case the library is planned to
be included in the core of their project.

The developers #10, #12, and #13 mentioned that their companies have a pool of
preapproved FOSS and homegrown libraries. These libraries and their dependencies are
checked for the presence of security issues and functionality bugs. Therefore, they have a
higher priority to be used compared to their FOSS alternatives.

We are trying to use them [preapproved libraries] actively. This is highly

appreciated and sometimes is even forced due to code reuse [...] (#13)

Discussion . Derr et al. [46] reported that Android developers consider security among
the least important criteria for selecting new dependencies. At the same time, several
recent papers underline the impact of company policies on developers’ decisions to consider
security. For example, the early dependency studies [30,39] reported that company policies
might encourage developers to consider security, but these policies are not always followed
in practice. More recent studies (e.g., [14, 191]) observed the more substantial impact of

7For detailed analysis, please refer to Appendix 8.7.
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the company policies on the developers’ decisions regarding considerations of security,
however, these studies provide limited insights on the impact of company policies on the
dependency selection process. Hence, our observation clarifies if company security policies
also impact the developers’ decisions regarding software dependencies.

Observation 2: Developers mostly rely on community support of a library: if a
vulnerability or a bug is discovered in a well-supported library, the fix appears quickly,
it is easy to adopt, and it does not break the dependent library.

The other interviewed developers instead relied on community support of considered
libraries, as the community can be leveraged for troubleshooting both functionality and
security issues: in case of a vulnerability is discovered in a well-supported library, it will
be quickly fixed, and the security fix is usually easy to adopt as it does not break the
dependent project.

I maybe do a quick google and select the thing that works best for a lot of

people[...] if there’re bugs, it’s going to be easier to work [them] out

just by using, let’s say, the canonical package [and asking the community for

support.] (#15)

Discussion . The previous studies of Android developers [46,85,191] reported that devel-
opers lack community support and a central package manager. We fill the gap by studying
the ecosystem of developers working in the context of established central package man-
agers (Maven, npm, PyPI). In addition, previous papers [30,75] suggested that developers
prefer libraries that are popular and well-supported to include in their projects as they
are more reliable from the functionality perspective. Hence, we add to these observations
by providing evidence that developers perceive community support as a ‘guarantee’ for a
library to be secure.

Observation 3: Dependency selection is often assigned to a skilled developer or a
software architect.

The task of selecting new dependencies is often assigned to software architects (#10,
#14, and #17) or to “someone who has experience” (#12):

The most difficult case is to decide which dependencies should be used, how

dependencies should be used, or in general design the structure of a project.

That is the reason why the task of designing the structure of software is

assigned to the software architect: because they have a lot of experience.

They have to check the project before developers actually work. (#17)

Discussion . Pano et al. [132] reported that a combination of developers, customers,
team, and team leaders often leads to the selection of a development technology/frame-
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work. In this perspective, we clarify that the dependency selection (i.e., specific libraries
to be used within a preselected framework) in big SMEs and LEs are often assigned to a
skilled developer or a software architect.

Observation 4: For dependency selection, developers mainly focus on the function-
ality support of a library rather than its security.

Interviewed developers mentioned functionality aspects twice more often rather than
security while selecting new software dependencies for their projects: 27 co-occurrences of
functionality and selection of new dependencies codes in the interviews of 12 developers
in comparison to 11 co-occurrences of security and selection of new dependencies codes
in the interviews of seven developers.

Observation 5: For dependency selection, developers refer to high-level information
that demonstrates community support of a library rather than low-level details of a library
source code.

When we asked questions about the selection of new dependencies, developers often
reported that they rely on third-party resources to get additional information about new
dependencies: 22 out of 25 developers (everybody, except #2, #3, and #20) shared
additional sources of information that they refer to before including a new dependency
into their projects.

14 out of 25 developers (#1, #4, #5, #6, #8, #9, #13, #15, #17, #19, #22, #23,
#24, and #25) named Github.com as the primary information source since Github allows
them to both understand whether there exists a strong community behind a particular
library and, if necessary, have additional details about library code. As for high-level
information, the interviewees may refer to the number of stars (#1, #4, #6, #9, #22,
and #23), project contributors (#4, #15, and #23), and library users (#4, #5, #9, #15,
#22, and #25). Additionally, developers were interested in the code style of a project
(#5, #8, #9, and #22), commit frequency (#4, #5, #8, #9, #17, #23, and #24), as well
as the number of issues resolved (#5, #9, and #17), still open (#17), and how quickly
an open issue is fixed (#4, #5, and #17).

If a library has thousands of issues that are open, then you need to be

careful. [Once] integrated, you may experience the same problems. (#9)

Additional sources of information mentioned by developers were Google (#4, #6, #15,
#16, and #25), dependency repositories, like Maven Central (#4, #12, #17, and #19),
npm, or PyPI (#9, #24), and StackOverflow (#22). The developers referred to these
sources to find the most popular dependencies that solve particular tasks.

According to the most referred sources and types of information, the interviewed
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developers pay little attention to security aspects (as unpalatable as this observation
might be) and instead look for excellent community support of the library: if a library
features quick security fixes but fixes of its functionality issues linger, such a library will
likely not be selected.
Discussion . We complement the existing observations (e.g., [30, 39, 46]) on the infor-
mation sources developers refer to while selecting new dependencies and provide specific
insights into why particular information source is referred to from the security perspective.

Observation 6: To avoid legal issues, enterprise developers check software licenses
while selecting new project dependencies.

Besides security and functionality, developers of every type of organization we covered
specified that one needs to be careful while selecting software dependencies since there
also exist license issues of using them as part of a proprietary software project: FOSS
(#13, #24), SME (#14, #24), LE (#3, #10, #13), UG (#2).

[...] if you sell some software, and inside your software you have a

restricted license, like GPLv3, you could have a lot of legal issues, because

the owner of the library may discover that and you may have a lot of legal

problems. (#3)

Discussion . Current qualitative studies of FOSS ecosystem [75, 191] provided limited
insights on the impact of legal concerns on developers’ decisions for selecting dependen-
cies. For example, Linden et al. [191] reported that individual developers recruited for a
laboratory task have a limited understanding of (and little patience to understand) legal
issues behind the usage of third-party software. In contrast, we observe that developers
belonging to each covered organization type (FOSS, SME, LE, UG) have reported that
they consider licenses of dependencies before using them.

3.3.2 RQ1.2: Motivations for (not) updating dependencies

To answer RQ1.2, we have looked into the particularity of the dependency management
process. More specifically, we have considered the conversation fragments labeled by the
codes of the attitude code group by counting the code co-occurrences (Table 3.5). We do
not apply a statistical test like Fisher because such a test is not appropriate to analyze
co-occurrences tables as the notion of the independent experimental unit is not met for
this qualitative analysis. For example, comments could come from different developers or
from the same developers, so the numbers reported in the rows and in the columns are
not independently drawn. Therefore, it would violate the assumptions of the test. For
this reason, a statistical test is rarely applied to a co-occurrence table in most qualitative
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Table 3.5: Developers’ attitudes: likes vs dislikes
The table shows the co-occurrence of codes like and dislike with other codes of issues, process, operations,
and context code groups. For example, codes dislike and management have 86 co-occurrences, which means
the depelopers often expressed negative attitudes towards dependency management. We mark (underline
and bold) the number of co-occurrences exceeding 18 (sum of the mean and one standard deviation of code
co-occurrences). The full co-occurrence table is available in the Apendix 8.6.

issues process operations context
broken bugs resources automated workflow management looking for info trans deps functionality security

dislike 21 29 23 14 16 86 15 12 23 36
like 6 31 3 4 6 44 9 1 8 44

studies and papers (see [162] for guidelines).

Observation 7: In general, developers have mixed perceptions about the dependency
management process, while few developers have strongly negative and positive attitudes.

Developers expressed different perceptions of the dependency management process:
they have mentioned negative aspects (86 co-occurrences of codes dislike and manage-
ment in the interviews of 22 developers), as well as expressed positive attitudes towards
dependency management (44 co-occurrences of codes like and management in the inter-
views of 18 developers). Six developers mentioned only problematic aspects, two reported
only positive attitudes, and 16 developers expressed mixed perceptions of the dependency
management process (i.e., their interviews contained co-occurrences of both dislike and
like codes with management code).

Yeah, it was really hard to switch from AngularJS [...] to Angular2. But

they did a great job, so every other update, like Angular2, 4, 5, 6, [...]

the switch is really smooth. You don’t have to do lots of crazy things.

(#21)

Discussion . Although several previous studies [29,30,39,91,119] reported developers to
have mainly negative attitudes towards dependency management, we observe that several
enterprise developers expressed entirely positive attitudes.

Observation 8: If developers update dependencies of their projects, they pay attention
to vulnerabilities.

The most important and discussed issue by the developers in our sample were bugs
(84 occurrences in 22 interviews). Furthermore, when the developers spoke about bugs,
they often discussed vulnerabilities (61 co-occurrences of codes bugs and security).

Observation 9: Developers perceive security-related fixes as easy to adopt, as for
widely-used and well-supported libraries, such fixes appear fast and do not break the de-
pendent projects.
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Developers do not have negative concerns about fixing vulnerabilities in dependencies
since they either use only well-known stable libraries that rarely introduce vulnerabilities
and quickly fix them (#5, #6, #16, and #17); or their projects are not security critical,
i.e., used only for internal purposes. Hence even if a vulnerability appears in their de-
pendencies, it will not be exploited (#3, #4, #9, and #24). Also, the adoption of fixed
versions typically does not break the dependent projects (#1, #4, #11, and #14).
Discussion . Developers are reported to be less proactive about dependencies [29] as
they felt challenging to manage dependencies or lack support from vendors [91].

However, we observe a generally positive attitude of developers to security fixes in
software dependencies since fixed versions of well-supported dependencies appear fast,
and their adoption does not break the dependent projects.

Observation 10: Developers avoid updating dependencies as they lack resources to
cope with the breaking changes (possibly hidden in transitive dependencies) introduced by
new dependency versions.

Many interviewees reported that they generally try to avoid updates of dependencies
in their projects. 14 developers (#1, #4, #7, #8, #9, #10, #11, #12, #14, #15, #16,
#17, #18, and #23) said that they do not have enough resources to perform proper
dependency management, while 11 developers (#4, #7, #8, #9, #12, #13, #14, #16,
#17, #19, and #23) mentioned that they avoid updating dependencies of their projects
since updates might introduce breaking changes:

Our project is huge. We tried once, and 1000 tests became down. To fix

it[...] We just do not have time for that. Hence everything became frozen.

(#8)
Eight developers (#1, #2, #3, #7, #13, #14, #17, and #23) said that they ex-

perienced problems with dependency management due to a high number of transitive
dependencies that are difficult to control.
Discussion . The previous studies of developers’ perceptions on dependencies [30,46,119]
reported breaking changes to be the main factor that stops developers from updating de-
pendencies of their projects. Our finding complements these studies and also suggests
project stability to be the highest priority for developers. I.e., they are not updating
dependencies for security reasons unless developers are confident that this update is free
from breaking changes (or developers have enough time and resources to test their projects
thoroughly). Also, our observation shows that the lack of control over the high number
of transitive dependencies causes a significant strain in managing and updating depen-
dencies. It can be one of the main reasons for not updating dependencies, in addition to
technical debts, performance reasons, or bug fixes [46].

50



Chapter 3 RQ1.3: Automation of Dependency Management

Observation 11: Company policy significantly affects developers’ decisions about up-
dating software dependencies by splitting the field in two: adopt every new version or
ignore all updates.

Developers #7 and #19 said that the established practice and company mindset might
force developers to follow different dependency management strategies. For example,
developers #7, #15, #19, and #21 said they keep dependencies of their projects fresh
and perform ‘small’ updates every time the new dependency version appears. Thus, the
update process seems “quite smooth” for them.

I faced dependency updates in [company name]. And there such task appeared

maybe twice a month. (#19)

On the other hand, developers #7, #8, #12, #15, and #19 mentioned that they try to
avoid updates of software dependencies as much as possible due to the risk-averse mindset
and lack of proper motivation for updating software dependencies (as new does not mean
bug-free): although they did not express any problematic aspect in it, developers #8,
#12, and #19 reported that they do not update dependencies in their projects since their
company policies suggest keeping versions of dependencies unchanged.

I faced at this job, that most people do not understand why it’s needed to

update libraries, why we need to refactor code. If everything works, do not

touch it, do you need that most? And if I start to fix everything by myself,

I would just become crazy to convince everyone. Actually, I had a not so

good experience, when I tried to increase the code quality a bit. And people

started to complain: why did you touch that? (#8)

Discussion . The previous studies report that developers do not update dependencies
because they work as intended [46,119], the update contains only minor improvements [14],
or there is not enough maintenance resources available [91]. In contrast, we observe that
several enterprise developers have an opposite approach: they update dependencies of
their projects as soon as the new version of a dependency appears. Our interviewees
suggest the company policy to be the critical factor for such a change in the dependency
management practice.

3.3.3 RQ1.3: Automation of Dependency Management

To answer RQ1.3, we have looked at the developers’ answers that were marked by one
of the codes from the process code group.

Observation 12: Dependency analysis tools (if used) are applied to identify arising
issues within dependencies, so developers can assess the findings to decide whether to
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Table 3.6: Dependency operations vs Process
The table shows the number of co-occurrences of codes of dependency operations and process code groups.
For example, codes workflow and management have 45 co-occurrences, which means the depelopers often
discussed how they integrated dependency management into their workflow. We mark (underline and
bold) the number of co-occurrences exceeding 18 (mean + one standard deviation). The full co-occurrence
table is in Apendix 8.6.

Dependency operations
maintenance management direct deps look for info trans deps

automated 1 18 0 7 2
code tool 0 5 0 2 0
workflow 1 45 2 13 2
dependency tool 3 26 0 9 1
manual 7 13 1 7 1

adopt a new dependency version. The dependency update itself is performed manually.

On dependency management (see Table 3.6), developers often referred to the contex-
tual information established within their companies: the codes management and workflow
co-occurred 45 times in the interviews of 16 developers (#3, #5, #7, #9, #10, #12–14,
#18–25).

Developers #3, #5, #7, and #10 reported that they apply dependency analysis
tools in their day-by-day work to identify possible problems within dependencies of their
projects (26 co-occurrences of codes dependency tool and management). They have the
automatic dependency scanning tools integrated with their workflow, and they have to
check the generated issues manually. If they decide to update a dependency, developers
#3, #7, #9, #17, and #18 prefer to manually configure the project to use the new version
and then manually test the project to ensure that it functions correctly.

You add a request and say: “I would like to have this library”. There

is a process for that and someone will investigate this and will run the

[Dependency Tool], and you will get an automatic report. And so the [library]

will be cleared or not. (#10)

Discussion . Several studies [29,39,82] reported that developers keep dependencies out-
dated due to the lack of awareness about security issues. There are some reasons for this:
the absence of proper security knowledge, lack of plans for security assessment, and appro-
priate tools [14]. But the studies did not investigate the roles of dependency analysis tools.
We observe that enterprise developers are aware of existence of dependency analysis tools,
and (if applicable) use them as the supporting source of information for planning manual
dependency management tasks. However, they do not rely on the tools for sensitive op-
erations, like automatically updating dependencies of their projects. The last observation
aligns and complements the finding reported by Mirhosseini and Parnin [119].
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Observation 13: Developers recommend using high-level metrics showing that a li-
brary is safe to use, mature, and does not bring too many transitive dependencies.

To facilitate the selection of new dependencies, developer #6 recommends having
badges in Github (or one’s dependency management system) that show whether usage of
a particular dependency is safe. Besides checking for vulnerabilities in a specific version
of a dependency, the developers #16 and #25 suggest defining whether the dependency
is mature (See Subsection 3.3.1), while the developer #13 would like to see if the new
dependency increases the technology stack or introduces new transitive dependencies.
Discussion . Mirhosseini and Parnin [119] reported that developers would like to see
some supporting and explanatory arguments for automated bug fixing suggestions to be
accepted. Also, the authors found that developers prefer to have passive notifications (e.g.,
badges) about changes in dependencies. We observe similar developers’ desire regarding
the information about software dependencies – developers would like to have a high-level
metric (i.e., an argument) showing if a library should be adopted.

Observation 14: Developers think that dependency analysis tools generate many
irrelevant or low priority alerts.

The developers #9, #15, and #22 tried dependency analysis tools but decided not to
introduce them into their work process due to a significant number of unrelated alerts:

I had one [dep. analysis tool] and it tended to spamming, and I turned it

off. For example, it reported minor vulnerabilities, so I was kind of annoyed

by them. (#15)

Observation 15: Several developers tried dependency analysis tools but decided to rely
on the information about vulnerability fixes and functionality improvements distributed via
social channels.

Many developers (#1, #2, #3, #7, #9, #10, #11, #17, and #18) perform manual
analysis of their dependencies. Five developers (#1, #2, #4, #18, and #24) said they
use social channels, like Twitter or project mailing lists, to receive information about
discovered issues and new versions of their project dependencies.
Discussion . Observation O14 suggests that dependency analysis tools share the well-
known weakness of static analysis tools (e.g., [85, 193]) used to find security issues in
the own code of software projects: false-positive and low-level alerts annoy developers.
Hence, they abandon the tools and prefer to seek social support, although the information
it sometimes provides is too much to digest [30].

Observation 16: Developers recommend dependency analysis tools to report only
relevant alerts, work offline, be easily integrated into company workflow, and report both
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recent and early safe versions of vulnerable dependencies.

Regarding the dependency analysis tools, developer #18 suggests the tools to report
only the findings that really affect the analyzed project (reduce the number of false pos-
itives). Developer #9 suggests that security tools should work offline since they may
disclose sensitive information about the analyzed projects. Developer #19 suggests that
the tools for analyzing software dependencies should be easy to integrate with develop-
ment pipelines, while developer #22 would like to have reported both early and recent
safe versions of the identified vulnerable dependencies, so there will be a possibility to
consider several versions to update to.

Discussion . Johnson et al. [85] reported that developers want code analysis tools that
provide faster feedback in an efficient way that does not disrupt their workflows and allow
them to ignore specific defects about their own code. We observe similar requirements for
dependency analysis tools.

Observation 17: Developers consider dependency analysis tools to be similar to static
(or dynamic) analysis tools and recommend these tools to be integrated so that they could
be applied simultaneously.

Developers #2, #3, #8, #9, and #13 considered dependency analysis tools to be
similar to code analysis tools (i.e., static or dynamic analysis tools). Hence, they could
be applied to the same stage of the software development process.

Security assessment of your dependencies should stay near the security

assessment of your code, because it’s part of the security assessment of

your code. (#3)

Developers #3 and #13 even gave us the recommendation to augment the reports
from a code analysis tool (for example, SonarQube [173]) with alerts generated by a
dependency analysis tool:

Maybe it’s possible to plug the results of dependency analysis to SonarQube?

So we would be able to use it later on in our continuous integration and do

continuous code analysis. It would be cool to have this. (#13)

Discussion . We do not find other related works that discuss the integration of depen-
dency analysis tools into the development workflow. However, since enterprise developers
often perceive the dependency analysis tools to be integration-wise similar to static anal-
ysis tools, the tools could be applied at the same time during the development process,
e.g., build or compile time [85,193], integrated into an IDE [74], or a code review [193].
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3.3.4 RQ1.4: Mitigating unfixed vulnerabilities

To answer RQ1.4, we had examined the developers’ answers, where they described the
mitigations of the cases when no newer version of a vulnerable dependency had a fix for
a vulnerability (the interview fragments tagged with codes fix availability and dislike).

Observation 18: When discovered a vulnerable dependency that does not have a fix,
developers first try to understand whether this vulnerability affects their project. If its fix
requires significant effort, then developers will likely decide to stay with the vulnerability.

Although the interviewees #1, #3, #7, #11, and #23 said that they always could
find a fixed version of a vulnerable dependency, the others considered such a situation as
probable and problematic.

When discovered a case of a vulnerable dependency that does not have a fix, the
developers #3, #5, #7, and #14 first assess whether this vulnerability impacts their
projects since they may not use the affected functionality. If a vulnerable dependency
does not impact their project, developers may decide to leave the project unchanged
(for example, #16). Even if a project depends on the affected functionality, but the
vulnerability fix requires significant development effort, developers #1, #2, #12, and
#15 prefer to stay with the vulnerability.

If I have to rewrite all the application and the cost is huge, then maybe we

will stay with the vulnerability. (#2)

Discussion . Several developers’ studies (e.g., [46, 91, 109]) reported the evidence that
developers try to avoid changing dependencies unless they understand the absolute ne-
cessity of this operation. Hence, this finding aligns with these studies, as the first step for
developers is to know if the vulnerability impacts their project [75, 91] and estimate the
effort required to mitigate the vulnerability.

Observation 19: If vulnerability affects their project, some developers may decide to
temporarily disable the affected functionality and wait for an ‘official’ patch.

Developers #2 and #12 said they could just roll back to a previous unaffected version
of a vulnerable dependency.

Suppose developers decide to address a security issue in the dependencies of their
projects without having a fix . In that case, they are likely to check the solutions suggested
by other library users or maintainers (for example, #4 and #15). In case they discover
that the maintainers are working on the problem and are going to release a fix soon,
the developers #4, #17, and #20 temporarily disable the project functionality that is
exposed to the vulnerability:
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We had to change the configuration of [image] library to totally disallow that

particular attack vector. (#20)

Discussion . Bogart et el. [30] observed that developers act less proactive about dealing
with (functionality) bugs in their dependencies: sometimes developers decide to do noth-
ing with their own project but wait for the fixed version of the dependency [109]. On the
other hand, we observe that developers are more proactive in case of vulnerability disclo-
sures: they check the impact of the vulnerability on their projects and provide immediate
solutions by disabling the affected functionality of their projects.

Observation 20: Skilled developers fix vulnerabilities in their dependencies and con-
tribute to the dependency projects.

The skilled developers #4, #7, #8, #13, and #15 may decide to fix security vulner-
ability by themselves. While developers #4, #8, #13, and #15 said that they prefer
to create an internal fork of a vulnerable dependency and maintain it until an ‘official’
vulnerability fix is released, the developers #7 and #13 reported that developers of their
companies actually fix discovered security issues and contribute to third-party projects
by opening pull requests in their FOSS repositories:

If this vulnerability seriously impacts our work and if this is an open source

product, then we just fix it. For example, if it is just in Github, we just

fix it, creating Pull Request. And we ask contributors or maintainers to

merge this Pull Request into the master branch. And we are pushing them to

release a new version faster. (#13)
Discussion . Several recent papers [30,75,109] reported that, depending on the expertise,
developers might decide to contribute to the dependency projects to fix some functionality
issues. The interviewed developers reported that they distinguish functionality and secu-
rity fixes and think security fixes require additional expertise. We also observe that skilled
developers also contribute to the dependency projects by fixing their security issues.

Observation 21: As the last resort, developers may substitute vulnerable dependency
of their project with another library that provides similar functionality.

If the fix of a software library is too complicated and the library is not well supported,
then developers may decide just to stop using it and switch to another library (for example,
#3 and #23).

Simply, we used another library, which more or less did the same thing. [...]

And that, of course, caused us to rewrite some piece of software. At least we

solved this memory leak problem in [Library Name]. (#23)

Discussion . Several studies suggested that developers might decide to update or down-
grade a vulnerable dependency to fix bugs [109] or even contribute to the dependency
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project [30,109]. In this respect, we contribute to this body of knowledge by showing that
enterprise developers sometimes decide to substitute a vulnerable library with another
one that provides similar functionality.

3.4 Implications and Research Ideas

Implication 1: Considering security while selecting new dependencies might be ex-
pensive for individual and SME developers.

While looking for libraries to include in their projects, developers have to seek and
combine information from various sources, like discussions present in developer forums
or code metrics extracted from software repositories. This process requires time and
expertise and, therefore, is preferably performed by experienced developers or software
architects (O3). In large enterprises, developers sometimes have a pool of preapproved
FOSS and homegrown libraries (O1). The developers of such companies could use these
libraries without further investigations as they are guaranteed to be reliable. However,
smaller software development companies or individual developers (e.g., freelancers) do
not have such a reliable source. While hiring an experienced software architect might be
pretty expensive for them.
Research ideas: To help SME and individual developers consider security while selecting
new dependencies for their projects, the complex information could be combined, e.g., in
the form of badges or meta-metrics accessible and understandable by developers (O13).
Such meta-metrics are expected to facilitate the following tasks:

• demonstrate that library is well-supported and its issues are resolved quickly (O2
and O9);

• suggest that the library is not affected by known security vulnerabilities (O13);
• demonstrate that the library is mature, so it does not bring many undiscovered bugs

and security vulnerabilities (O13);
• show the library’s licenses and dependencies (O6).
Implication 2: Both LE and SME developers are more likely to adopt a security fix

not bundled with functionality improvements.
Since security fixes (at least for well-supported libraries) typically do not introduce

breaking changes (O9), and they should not be bundled together with functionality im-
provements. If security fixes and functionality improvements are mixed, developers would
have to spend efforts to cope with breaking changes introduced by the latter. Under
the constraints of limited resources (O10), developers will most likely ignore such an
update and stay with the vulnerability. Instead, if a security fix is well-indicated, well-
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documented, and does not require significant development effort, it has more chances to
be adopted.
Research ideas: To help library creators always keep functionality, updates, and security
fixes separate, researchers could design an automatic approach capable of distinguishing
functionality and security changes. Then developers might decide to release two indepen-
dent library versions. For library users, researchers could develop an automatic classifier
capable of identifying if a specific library version includes changes related to functional-
ity or security. So, developers could immediately adopt security fixes and schedule the
adoption of functionality updates.

Implication 3: LE developers tend to adopt automated dependency analysis tools,
while SME and individual developers are not encouraged to use them.

LE developers have policies to consider the security of their dependencies, and there-
fore they are forced to use the dependency analysis tools (O11). In contrast, SME and
individual developers lack procedures for considering security in their projects. Moreover,
they are more concerned about developing new functionality. Therefore, they often prefer
to ignore “annoying” alerts of dependency analysis tools (O14) and fix security issues in
the dependencies of their projects only if these issues are severe and widely known.
Research ideas: To facilitate the adoption of dependency analysis tools by SME and
individual developers, tool creators could design their tools to satisfy the following devel-
opers’ requirements:

• report only vulnerable dependencies that actually affect the analyzed project (O14,
O16, and O18);

• identification of the part of the analyzed project affected by the vulnerability (O18);
• suggest both new and early safe versions of the dependency, so developers could

select the best mitigation strategy: to adopt a new version or roll-back to an earlier
one (O16);

• suggest if a fixed version introduces breaking changes (O16).
Implication 4: LE developers are more proactive in fixing vulnerabilities within de-

pendencies of their projects, while SME and individual developers tend to behave passively.
LE developers sometimes contribute to the projects they depend on by fixing vulnera-

bilities and creating pull requests (O20). However, SME and individual developers might
not have enough time, skills, and development resources to support dependency projects.
Therefore, they tend to rely on community support of their dependencies and would prefer
to either stay with vulnerability (O18) or temporarily disable some functionality of their
projects8 (O19).

8Some LE developers also prefer to temporarily disable the feature within their projects, when such
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Research ideas: If there is no fixed version available for a vulnerable dependency, the
developers perform manual analysis to devise the countermeasures for the discovered issue.
Since this action is critical, on top of the requirements presented in Implication 3, there
is a need to have support from the dependency analysis tools on the following aspects
(especially for LE developers):

• accessing the dependency source code, so the developers could directly check it and
possibly fix the issue (O20);

• finding an alternative library with similar functionalities and estimating the cost of
switching to this library (O21).

3.5 Threats to Validity

We recruited developers for our study without using any material rewards, only based
on their interest in the topic. In our study, we aimed to receive information from indus-
trial specialists who have good solid positions. Hence, we could not think of any better
reward for them than a possibility of improving the development practice by sharing their
experience and telling us their opinions on their problems. Moreover, the developers were
very often motivated because we had already had a prototype of a tool that we could use
to produce some dependency analysis reports for their projects. Therefore, we believe
that this strategy allowed us to receive precious feedback from the field specialists, who
have the appropriate level of knowledge of the topic.

We applied the snowballing approach to increase the number of developers we could
reach. This may potentially attract developers from the same development communities
who share common views. To mitigate this bias, we selected developers from different
companies and countries. As a result, the interviewed developers have various backgrounds
and company positions. Hence, we believe that this threat is minimal.

Our observations are based on facts as perceived by the interviewees. They might not
necessarily reflect the reality, hence, more qualitative and quantitative studies are needed
to validate the presented implications. Unfortunately, field and observational studies are
hard to get. For example, de Souza and Redmiles [42] report two case studies for a total
of 23 interviews. However, despite de Souza being embedded in the company for several
weeks, only “some of the team members agreed to be shadowed for a few days”. Similarly,
Van et al. [191] did a survey of 274 developers but, to observe developers, had to recruit
44 of them and assign them laboratory-designed tasks.

an option is allowed by their company policy.
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Currently, we mostly asked developers about dependency management practices within
their companies, which may hide some issues related to the development of FOSS projects.
However, nowadays, developers often have to consume, contribute to, or, at least, follow
the trends in FOSS community: several interviewees, although being industrial employees,
also told us about their contributions to FOSS projects. Hence, we believe that this study’s
analysis and implications provide valuable insights for developers working in both FOSS
and enterprise contexts.

We present our interpretations of the developers’ statements. To minimize confirma-
tion bias, the two researchers individually extracted their observations and implications
from the interviews, while the third researcher performed an additional validation of the
analysis results. Additionally, we validated the results with the developers by sharing the
one-page summary of the findings with the interviewees. Hence, we believe our results
correspond to the actually reported dependency management practices.

Our study does not represent specific industries as they come from a sample that is
not representative of those industries. We cannot disclose the identity of the participants,
and the interviewees are agreed to be transparent and open under the promise that their
interviews would be anonymous. This risk would not be balanced by the disclosure as the
sample would still be limited, so one could still argue that the findings are not significant.

3.6 Conclusions

This chapter reports the results of a qualitative study of developers’ perception of
software dependencies and the relative importance of security and functionality issues.
We run 25 semi-structured interviews, each around 30 minutes, with developers from
both large and small-medium enterprises located in nine different countries.

All interviews were transcribed and coded, along with the principles of applied the-
matic analysis. Table 3.7 summarizes our findings and their implications.
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Table 3.7: Summary of Results

RQ Analysis Summary Implications

RQ1.1

When selecting a new dependency, developers
pay attention to security only if it is required
and enforced by the policy of their company.
Otherwise, they mainly rely on popularity and
community support of libraries (e.g., number
of stars, forks, project contributors).

High level metrics, that allow developers
to understand that the library is well-
supported, mature, and not affected by se-
curity vulnerabilities, could facilitate library
selection.

RQ1.2

As generally developers lack resources to cope
with possible breaking changes, they prefer to
avoid updating dependencies for any reason.
Security vulnerabilities motivate developers for
updating only if they are severe, widely known,
and adoption of the fixed dependency version
does not require significant efforts.

To be adopted, library versions that fix vul-
nerabilities should (i) be well-indicated, (ii)
not introduce breaking changes, and (iii) not
contain functionality improvements (as they
are likely to break dependent projects).

RQ1.3

Developers perform sensitive dependency man-
agement tasks (e.g., updates) manually. Cur-
rent dependency analysis tools (if used) only
facilitate identification of vulnerabilities in the
project dependencies. Developers complain
that dependency tools produce many false-
positive and low-priority alerts.

Dependency analysis tools should (i) gen-
erate alerts only relevant to the used frag-
ments of the libraries; (ii) show the affected
components of the dependent projects; (iii)
suggest if there exists a fixed version and if
its adoption introduces breaking changes.

RQ1.4

The interviewees suggested the following ac-
tions when a vulnerability is discovered in a
dependency but no newer version fixes it: (i)
assess if this vulnerability impacts them since
they may not use that particular functional-
ity; (ii) leave the vulnerability and wait for
the fix or a community workaround, (iii) adapt
own project, i.e., disable vulnerable function-
ality or rollback to a previously safe library
version; (iv) maintain own fork (possibly fix-
ing and making a pull request).

Dependency tools should (i) primarily de-
termine which part of the dependent project
is actually affected by the vulnerability in a
dependency; (ii) facilitate access to the de-
pendency source code, so developers could
assess and possibly fix the vulnerability by
themselves; (iii) suggest an alternative li-
brary that provides similar functionality.
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4
py2src: Automatic Identification of Source
Code Repositories and Factors for Selecting
New PyPI Packages

“It won’t be covered in the book. The source code has to be useful for some-
thing, after all ...”

– Larry Wall

Selecting which libraries (‘dependencies’ in the software industry’s jargon) to adopt in a
project is an essential task in software development. Recent qualitative studies show that
popularity, licensing, and quality (from security to timeliness) of the corresponding source
code are some of the factors behind this selection. In this chapter, we seek an empirical,
quantitative confirmation of the role of popularity and quality factors in the adoption of a
dependency or just its download as a software package in the Python Package Index (PyPI)
ecosystem. We develop a tool called py2src to automatically identify GitHub source code
repositories corresponding to packages in PyPI and extract the popularity and quality factors
of the source code from GitHub that should explain the corresponding popularity (adoption) of
packages in PyPI. The regression analysis shows that the number of stars, closed issues, and
number of found and fixed vulnerabilities correspond to an increase in adoption (number of
dependent repositories and package downloads). On the other hand, the frequency of releases
contributes to decreasing the number of package downloads. The proposed py2src tool
facilitates the selection of new software dependencies for Python projects by providing their
source code repository URLs along with a set of associated reliability metrics.
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4.1 Goal and Research Questions

Several recent papers discussed qualitative reasons behind the developers’ choice of
dependencies [91, 136]. In particular, they investigated how and why developers select
dependencies to include in their projects and how security concerns affect their decisions.

Developers reported that for dependency selection, they refer to high-level information
(e.g., meta-metrics) that demonstrates package adoption of a library rather than low-level
details of a library source code [Observation 5 in Chapter 3] Still, most of the factors
mentioned by developers are connected with the library source code repositories (e.g.,
GitHub), such as the number of stars, forks, project contributors, open/closed issues,
speed of issue resolution, general code quality.

Although there are many observations about the general thinking of developers, there
is very little evidence that the ‘factors’ suggested in the qualitative studies (e.g., interviews
or surveys) explain the popularity of the libraries on a large scale. Moreover, extracting
these factors requires identifying the source code repositories of the libraries: the state-
of-the-art automatic tools (Subsection 2.5.2) capable of extracting such factors typically
assume the corresponding source code URLs to be always available.

This chapter aims to find an automatically and reliable way to identify Github repos-
itories corresponding to PyPI packages. Furthermore, we empirically study the influence
of the factors extracted from the source code repositories on adopting new PyPI packages.
In particular, we focus on the following research questions:

RQ2.1: How can we combine the information displayed on PyPI pages to accurately
identify GitHub URLs corresponding to PyPI packages and validate them?

RQ2.2: Which of the suggested relevant factors do explain the adoption of a library?

This chapter makes the following contributions:

• We developed a tool called py2src to automatically identify the GitHub source
code repositories corresponding to packages in PyPI and extract the quality as well
as popularity (adoption) factors of these repositories

• We performed an extensive empirical study of the quality factors that should explain
the corresponding popularity (adoption) of PyPI packages.

Our regression analysis on the top most downloaded PyPI packages shows that Stars,
Closed Issues, and the number of fixed vulnerabilities increase the adoption of packages
in both GitHub and PyPI. In contrast, Release Frequency contributes to decreasing the
number of package downloads from PyPI.

63



4.2. Methodology Chapter 4

Top PyPI
packages

Badge URL

Homepage URL

Metadata URL

Statistics URL

Readthedocs URL

Final URLs &
Reliability metrics Factors

Github
API

Repo
page

PyPI
JSON

Snyk
DB

URLs Extraction URLs Score Calculation Factors Gathering
We design py2src to first automatically identify corresponding GitHub URLs and then extract factors
reported by developers as reasonable proxies for package quality and adoption.

Figure 4.1: Methodology process flow

4.2 Methodology

Figure 4.1 describes our procedure for finding and verifying the resulting Github URLs.
First, we identify the GitHub source code repository URL that corresponds to a PyPI
package. Then we use this URL to extract the factors that, reported by the developers’
interviews [94,136], are used to decide package quality and adoption.

4.2.1 Finding GitHub URL of a PyPI package

To find the GitHub URL of a PyPI package, we refer to the information extracted from
PyPI. For example, a PyPI page might reference the corresponding source code repository
in the package description or the statistics section. Also, each PyPI package has a package
metadata in JSON format that might as well contain a GitHub URL reference. Existing
tools such as OFS uses package metadata as the primary information source for identifying
corresponding GitHub URLs. Table 4.1 lists the information sources that could point to
the corresponding GitHub URL of a PyPI package.

EXAMPLE 3. The PyPI page of the six package [24] contains the GitHub repository
URL [25] in the description, statistics, homepage, and metadata sections [23]. There are
also the Readthedocs page and the Travis badge pointing to the GitHub repository.
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Table 4.1: Information sources for identifying GitHub URLs of PyPI packages

Information Source Description

Badge

Badges allow developers to, for example, easily access the source
code of the package (e.g., GitHub badge) or understand the status
of the project build (e.g., Travis badgea). We extract URLs pointing
to GitHub repositories from these badges.

Homepage
A PyPI page might contain a link to the homepage of the given
package. We check if this URL points to GitHub.

Metadata
Every PyPI package has a metadata information that can be ac-
cessed via https://pypi.org/pypi/{package_name}/json.

Page Conservative URL
We look for GitHub URLs mentioned at the entire PyPI page and
return a URL only if there is just that single URL mentioned among
the whole page.

Page Majority URL
We look for GitHub URLs mentioned on the PyPI page and return
the URL with the highest occurrences.

Readthedocs
Readthedocs.io documentation web pages often include GitHub
URLs. Hence, we parse the Readthedocs.io page of a package to
extract the corresponding GitHub URLs.

Statistics
A PyPI page might include a Statistics section that displays some
GitHub factors (e.g., stars, forks, contributors). We use this section
to extract the corresponding GitHub URL.

a GitHub URL can be obtained from the Travis Badge by substituting ‘https://travis-ci.org’
with ‘https://github.com’.
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We combine the URLs reported by the information sources into the Mode URL as
follows:

• We extract all URLs from the information sources;
• If there is no URL pointing to a GitHub repository,1 we return an empty Mode

URL;
• If all information sources point to the same URL, we set Mode URL to be equal

to this URL;
• If URLs point to different GitHub repositories, we set Mode URL to the URL that

has a bigger number of information sources supporting it;
• If several URLs are supported by an equal number of information sources, we set

Mode URL to the first observed URL, according to the order of Table 4.1.
For each identified GitHub URL (including the Mode URL), we extract additional

reliability metrics (shown in Table 4.3) that support the correspondence of this URL to
the PyPI package. A metric might have a value of 1 or -1 depending on whether the
metric condition is satisfied. If the corresponding information for a metric is not available
(e.g., there is no PyPI badge), we assign value zero to the metric. Hence, the score for a
URL may range from -4 to 4.

EXAMPLE 4. Consider the GitHub repository [25] for the six package reported by py2src:
the repository has the equal names (+1) and descriptions (+1) to those in PyPI, Python
is listed in the Languages section (+1), and there is a badge pointing to the PyPI page of
the six package (+1). As a result, the reliability score is 4.

We have further performed the manual validation of the proposed approach for finding
corresponding GitHub URLs on the subset of 325 packages for which the identified URLs
have the lowest reliability as follows:

• 181 packages where OFS and Mode report different GitHub URLs. In this way,
we investigate the conflicts and look for an effective way to resolve them;

• 74 packages whose URLs reported by OFS have low reliability scores. In doing so,
we show how our approach complements OFS in finding correct GitHub URLs;

• 70 randomly selected packages (out of 282) whose URLs are supported by only one
or two information sources (out of seven). These packages help us explore new
information sources to find correct GitHub URLs.

For these packages, three researchers independently identified the corresponding GitHub
URLs without considering the suggestions from information sources and reliability met-

1We perform a URL validation to check if the URL is from GitHub and actually working. In case
there is a redirect, we follow it and report the last URL.
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Table 4.3: Reliable attribution metrics
A metric has value 1 if the condition is satisfied, -1 if the condition is not satisfied, and 0 if the metric
cannot be computed (e.g., a badge is absent). All six metrics are used to assign the manual score for the
45 sample packages, while only the first four ones are also computed automatically once the GitHub URL
is identified.

Metric Description
Condition for cal-
culating Automatic
score

Name
similaritya

We use the Levenshtein distance [101] to calculate the dif-
ference between the names of a package in PyPI and its
GitHub repository. The distance ranges from 0 (the strings
are equal) to the maximum length of the compared strings.
However, sometimes the Levenshtein distance could be non-
zero because one name is a substring of the other: the
name of the source code repository of the future package is
python-future. Hence, we also check whether names are
substrings.

Distanceb < 2 or isSub-
string

Description
similarity

The Levenshtein distance between the project descriptions
(truncated at 1500 characters) in PyPI and GitHub pages.
The lower the distance, the more credible the URL is.

Distance
Length < 0.5

Python lan-
guage

Describes if Python is included in the Languages section of
the GitHub page.

Python in Languages
sec.

PyPI badge
Presence of a badge on the GitHub page that points to the
PyPI page of the package under analysis.

Badge is present and
points to the analyzed
package

Authors simi-
larity

PyPI package maintainers are present in the list of the
GitHub repository contributors.

N/A (manually assess-
ment)

Releases simi-
larity

Alignment of GitHub repository tags and PyPI package re-
leases.

N/A (manually assess-
ment)

a We combine Levenshtein distance and isSubstring to estimate the name similarity since we want to have
a single metric that corresponds to a human intuition that the package names are similar. We prefer to
keep a single metric as splitting might create an imbalance in the reliability score towards the name of a
package in PyPI and its corresponding GitHub repository with respect to the other attribution metrics.
b The threshold of two characters cannot be applied for packages whose name has only one character.
However, there is only one such package (‘q’) in the set of the most downloaded packages. Moreover, the
corresponding GitHub URL name for this package is equal to the package name.
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rics. In particular, each package was analyzed manually by two researchers to find the
corresponding GitHub URLs. If the validation resulted in a different URL, the third re-
searcher resolved the conflict. So for each package, we had a complete agreement on the
identified URL (if any) by the three researchers.

We first randomly sampled 45 packages from the set of 325 packages and manually es-
timated the correctness of the URLs using the checklist, which includes the four reliability
metrics from Table 4.3.

Then we extended the manual validation to all 325 packages (10% of the top down-
loaded packages) to construct the final dataset of GitHub URLs corresponding to PyPI
packages for factors evaluation.

4.2.2 Evaluation of Quality and Popularity Factors

We referred to the previous qualitative studies [94,136] for the list of factors developers
consider while selecting new software dependencies for their projectsv(Table 4.5).

We use the following two variables as proxies for package popularity: the number
of dependent repositories and package downloads. The first variable represents pack-
ages’ popularity among developers who actually include these packages as their project
dependencies. At the same time, the number of package downloads represents packages’
popularity among package users (not necessarily developers) who download these packages
from PyPI (also as dependencies for other packages).

We collected data for the factors from GitHub on March 2021 and used GitHub APIs2

as the primary extraction method for such factors. Additionally, we crawled the GitHub
repository page corresponding to a package to extract the factors that are not accessible
using the GitHub APIs (e.g., the number of commits and releases). Table 4.5 provides
the descriptions of each factor used in our study.3

Regarding the data for vulnerabilities affecting PyPI packages, we referred to the Snyk
Vulnerability DB [172] as it is one of the most complete, open, and updated vulnerability
databases [171]. As of March 2021, the Snyk database contained 1276 vulnerabilities, 707
of which were related to 220 packages in our sample.

Finally, we performed a regression analysis using the first ten quality factors as depen-
dent variables and the last two popularity factors as independent variables (Table 4.5).

2It returns a JSON containing repository metadata, accessing from https://api.github.com/repos/
{org_name}/{repo_name}.

3Some of the definitions are taken from the GitHub glossary [62].
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Table 4.5: The factors developers rely upon when selecting new dependencies
The first ten factors (the rows shaded in grey) represent the factors suggested by previous qualitative
studies [94,136], while the last three factors serve as proxies for package popularity.

Factor Description Source Extraction Method

Stars
The number of GitHub users
displaying an appreciation for
the repository

GitHub API
Extract the stargazers tag in
a Github repository

Contributors

The number of GitHub users
who do not have collaborator
access to a repository but con-
tributed to a project and had
a pull request merged into the
repository

GitHub page
Extract the Contributors
from from a Github repository

Open issues
The number of not addressed
issues in the repository

GitHub page
Extract the Open issues from
a Github repository

Closed issues
The number of resolved issues
linked to the repository

GitHub page
Extract the Closed issues from
a Github repository

Open/Closed
issues

The fraction of open and closed
issues

GitHub page
Number of Open issues divided
by number of Closed issues

Commit fre-
quency

The average number of com-
mits per month

GitHub page

Total the number of months di-
vided by total number of com-
mits since the repository cre-
ation datea

Release fre-
quency

The average number of days
between two releases

GitHub page
Number of days divided by
number of releases/tags since
the repository creation date

Time to close
issue

The average number of days
between opening and closing of
an issue

GitHub API
Average of the number of days
between opening and closing
each closed issue

Q
ua

lit
y

Vulnerabilities
The number of vulnerabilities
discovered in a package

Snyk DB
Extract the vulnerabilities
related to PyPI packages
from [192]

License
Set to 1 if package’s license is
permissive [116], -1 if it is copy-
left, and 0 if it is unknown

GitHub page Extract permissive licenses

Dependent re-
pos

The number of GitHub repos-
itories that have the current
repository as a dependency

GitHub page
Extract from the Used by sec-
tion in a Github repository

P
op

ul
ar
it
y

PyPI down-
loads

The number of users that
downloaded the PyPI package

PyPI JSON Extract from [192]

a created_at value of the JSON metadata returned by GitHub API.
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Table 4.7: Information sources reporting a URL for PyPI packages
The last columns refer to OFS and the two proposed approaches to combine information sources (the first
columns). The Final URL is equal to the Mode URL, if the Mode URL is present, and to the OFS URL
otherwise.

Badge Homepage Metadata Page Conserv. Page Major. Readthedocs Statistics OFS Mode Final
# Packages 1491 2127 2896 2210 3069 822 3074 3369 3473 3493
% Packages 37% 53% 72% 55% 77% 21% 77% 84% 87% 87%
No URL 2509 1873 1104 1790 931 3178 926 631 527 507

4.3 Information sources for finding GitHub URLs of
PyPI packages

To check the proposed approach for finding the GitHub URLs in the selected infor-
mation sources (Table 4.1), we use the list of 4000 top-downloaded packages4, used by
the previous works to study different aspects of PyPI packages in both academia [31] and
industry [45, 123, 194]. The presence of a package within the list of the top downloaded
packages is a good indicator of its popularity [211].

Table 4.7 shows the number of GitHub URLs reported by the information sources. The
Statistics section of a PyPI page contains GitHub URLs for 77% of packages. In contrast,
the Readthedocs page allows us to identify GitHub URLs for 21% of the packages. A PyPI
package might have several different URLs reported by the information sources:

EXAMPLE 5. The Information sources suggest four different GitHub URLs for the zappa
package: the most present is returned by Badge, Metadata, and Statistics, while Homepage,
Page Majority, and Readthedocs report the other three URLs.

When considering the aggregated URLs of the information sources, the Mode URL
allows us to find GitHub URLs for 87% of the selected packages. At the same time,
OFS can identify GitHub URLs for 84% of packages in our sample. Furthermore, the
Final URL (i.e., combined Mode and OFS URLs) enables us to find GitHub URLs for 20
additional packages.

Figure 4.2 shows the distribution of the number of URLs identified by the number
of information sources. In particular, the information sources return one URL for 3033
packages (76%), two different URLs for 395 packages (10%), three different URLs for 44
packages (1%), and only the zappa package has four different URLs.

Table 4.8 shows the number of the same URLs reported by individual information
sources (i.e., agreement). We observe that the Statistics information source has the highest
number of URLs that agree with other sources. For example, 3061 (out of 3074) Statistics

4Number of downloads in the last 365 days as of September, 2020 [150]
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For three out of four packages, the information sources return one GitHub URL, while for one out of
eight packages no URL is returned.

Figure 4.2: Distribution of the number of identified Github URLs of the packages

URLs are equal to the URLs found by OFS, while URLs for only 13 packages are different.
However, OFS identified URLs for 295 packages, where the Statistics did not report
a URL. Similarly, we observe that the Metadata and OFS report different URLs for
six packages. However, the Metadata information source does not report URLs for 479
packages where OSS Find Source returns a URL. Also, the URLs reported by Statistics
and Metadata information sources differ for 16 packages.
Discussion . An individual information source reports fewer URLs compared to the state-
of-the-art OFS tool. However, the Mode combination of the sources allows us to increase
the number of identified GitHub URLs by 3%. Hence, the proposed information sources
are promising to identify GitHub URLs corresponding to PyPI packages automatically.

The information sources may contain different GitHub URLs because package main-
tainers might host another repository to provide more information for the original package.
Unfortunately, the maintainers forgot to update the new repository in their migration.

EXAMPLE 6. The robotframework-selenium2library PyPI page points to the Github
repository https: // github. com/ robotframework/ SeleniumLibrary that contains the
code for the releases before v1.8.0 and after v3.0.0a1. The other releases are stored in
a different repository https: // github. com/ robotframework/ Selenium2Library .
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Table 4.8: Information sources agreement on found URLs
For each row i and column j, the corresponding cell contains the number of found URLs by the informa-
tion source i that equal to the URLs found by the information source j.

OFS Badge Homepage Metadata Page Conserv. Page Major. Readthedocs Statistics
OFS 3369 1371 2018 2890 2188 2891 560 3061
Badge - 1491 959 1169 954 1191 383 1235
Homepage - - 2127 1828 1902 1778 393 1905
Metadata - - - 2896 1888 2674 464 2880
Page Conserv. - - - - 2210 1908 385 2015
Page Major. - - - - - 3069 488 2764
Readthedocs - - - - - - 822 495
Statistics - - - - - - - 3074

Still, most information sources (e.g., 76%) report one URL, and we observe the high
agreement between the sources. Therefore, the reported URLs are likely to be the actual
URLs corresponding to the source code repository URLs of PyPI packages. We check this
further in our following sections using the set of manually identified GitHub URLs that
correspond to the 325 PyPI packages and the reliable attribution metrics (Table 4.3).
Summary: The proposed information sources in Table 4.1 enable us to identify GitHub
URLs for more packages than the existing tool tool OFS (Table 4.7) for an automatic
finding of GitHub URLs that correspond to PyPI packages by 3%.

4.4 RQ2.1: Combining information sources

To evaluate the URLs reported by the information sources, we manually identified
GitHub URLs for 325 packages (see Subsection 4.2). We manually inspected the PyPI
pages of the selected packages to identify the corresponding GitHub URL. If the web page
inspection did not allow us to find the corresponding GitHub URL, we used Google search
to look for the corresponding source code repository.

Developers of some packages can use a different platform than GitHub (e.g., Git-
Lab [64], BitBucket [28], or SourceForge [175]) to store their source code while maintain-
ing a mirror of their repository on GitHub. In such cases, we check if a GitHub mirror
corresponds to the original repository in terms of the aligned releases and commits. If the
GitHub mirror exists, we consider it to be a valid GitHub URL of a package.

EXAMPLE 7. The peakutils package [122], has the original source code reposiotry in
BitBucket https: // bitbucket. org/ lucashnegri/ peakutils , and the aligned GitHub
mirror https: // github. com/ lucashn/ peakutils .
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4.4.1 Combining information sources.

To find the most reliable way to combine the URLs of the information sources and
verify the accuracy of the automatic extraction of reliable attribution metrics, we ran-
domly selected 45 packages from the 325 packages for which we identified GitHub URLs
manually:

• 15 packages where OFS and Mode reports the same URL;
• 15 packages where the manually identified URL equals to the Mode, but not to the

OFS URL;
• 15 packages where the manually selected URL equals to OFS URL, but not to the

Mode.
A GitHub repository can host multiple packages in its subdirectories, which are con-

sidered mono repositories [143]. In such a case, we consider only the parent repository
as the right one representing all its sub repositories. Therefore, even though we can find
a specific URL that corresponds to a package that is a part of a mono repository, we do
not consider such URLs for the analysis of reliable attribution metrics.

EXAMPLE 8. 19 different PyPI packages (e.g., grpc-google-iam-v1) belong to the
googleapis repository on Github [11].

In our sample, we observed that four of the selected packages correspond to the
googleapis and twitter-archive mono repositories [13]. Therefore, we do not consider
them for further analysis.

For each of the 41 URLs, we manually calculate the reliable attribution metrics (shown
in Table 4.3): each check gives a URL a score of 1, -1, or 0 if the URL is respectively
correct, incorrect, or empty. The reliability score of a URL is the sum of all the metrics
values. Hence, a URL has a reliability score in the range from -6 to 6.

EXAMPLE 9. The GitHub repository name [16] of awscli [17] differs from the package
name by one character (+1). The GitHub and PyPI descriptions are the same (+1). The
repository has a Python percentage of 100% (+1). There is a match between the list of
GitHub tags and PyPI releases (+1). PyPI maintainers can be found in the list of GitHub
contributors (+1). There is no badge pointing to the PyPI page on the GitHub page (0).
The total reliability score we assign to the URL is 5.

We then check the agreement between the URLs reported by the information sources
(including OFS and Mode) and manually identified URLs. Finally, we evaluate the
agreement score by counting the number of matching reliable metrics for the manually
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Table 4.9: Agreement between the reliability scores of URLs returned by information
sources and manually identified URLs
We used the Pearson correlation coefficient to rate the agreement between the returned URLs.

Badge Homepage Metadata Page Conserv. Page Major. Readthedocs Statistics OFS Mode

Agreement 97% 92% 83% 85% 62% 92% 81 % 80% 83%

selected URL of a given package (+1 value) and assigning the positive value to the URL
if it equals the manually identified URL and negative otherwise.

If the URL returned by an information source is empty, we assign it a zero score (i.e.,
it does not help us decide whether the URL is reliable). Then we compare the correlation
of reliability and agreement scores for each URL.

As shown in Table 4.9, we use the Pearson’s correlation cofficient [21] to measure
the agreement between the information sources in Table 4.1 plus OFS, and Mode URL.
While most of the information sources demonstrate a high degree of agreement (75%), the
Page Majority information source has a lower agreement level (62%). Moreover, our
manual analysis of the URLs reported by Page Majority suggests that it is prone to
report a high number of wrong URLs, which might lead to less precise URLs returned by
the Mode URL. On the other hand, we realized that Page Conservative information
source often does not return any URL (e.g., many false negatives). In contrast, when the
URLs are actually returned, they can also be found by other information sources. For
this reason, we decided to exclude Page Majority and Page Conservative URLs
from further analysis.

Figure 4.3 shows the bubble plot to compare the manually and automatically computed
URL reliability scores: each circle in the plot has a size proportional to the number of
URLs with the corresponding tuple of manual-automatic scores. The plot clearly shows
the positive correlation between the manual and automatically computed reliability scores
over the manually selected URLs. Moreover, the high agreement level of 73% confirms
the visual relationships between these manually and automatically computed reliability
scores. Hence, automatically calculated URL reliability scores are likely to correspond to
the scores assigned by a human.

Further, we compare the performance of OFS and Mode URL in terms of precision
and recall. Table 4.10 shows that both methods produce equal recall, but Mode URL
has 4% higher precision than OFS (i.e., Mode URL returned more URLs equal to the
manually identified ones).

Our manual analysis of the agreement between the URLs reported by both methods
suggests the following:
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Figure 4.3: Manual and Automatic reliability score over the 45 selected packages

Table 4.10: Performance of OFS and methods that combine information sources
ModeThenOSG demonstrates the best performance, hence, we use it as the best combination of the sources.
In the rest of the chapter, we refer to ModeThenOSG as Final URL.

Resulting URL Precision Recall
OFS 86% 68%
Mode 96% 68%
OFSThenMode 90% 100%
ModeThenOFS (Final) 95% 100%
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Table 4.11: py2src sources and tools comparison in terms of Precision and Recall among
the 325 packages
The last columns refer to OFS and the two proposed approaches to combine the remaining information
sources (the first columns).

Badge Homepage Metadata Readthedocs Statistics OFS Mode Final

Precision 93% 92% 97% 54% 95% 80% 86% 83%
Recall 23% 32% 19% 11% 27% 48% 78% 90%

• When both methods returned the same URL, this URL corresponds to the manually
identified one;

• When both methods return different URLs, three out of four URLs identified by
Mode URL correspond to the manually identified URL while only one out of three
for OFS;

• When OFS returns no URL, Mode URL identifies the URL corresponding to the
manually identified one;

• When Mode returns no URL, OFS identifies the URL corresponding to the man-
ually identified one.

The above observations suggest that the combination of OFS and Mode seems
promising. Indeed, we observe that by combining the two approaches, we can gain 100%
recall and increased precision (the last two rows of Table 4.10). Taking first the OFS
URL and, if it is empty, returning the Mode URL (i.e., so-called OSGThenMode) al-
lowed us to have 90% precision. In comparison, the inverted approach ModeThenOSG
leads to 95% precision. Hence, we adopt the latter combination ModeThenOSG as the
most reliable way of combining the information sources. Further, we refer to the URLs
obtained by the ModeThenOSG combination as the Final URLs.

4.4.2 Scaling the evaluation to 325 packages

We scale the evaluation to 325 packages, for which we identified corresponding GitHub
URLs manually. First, we calculate precision and recall for the selected information
sources, OFS, Mode URL, and Final URL using the manually identified URLs as cor-
rect URLs. Table 4.11 shows that Metadata has the highest precision of 97%, while
Readthedocs is the least precise (54%) information source. However, both the information
sources Metadata and Readthedocs have a relatively low recall (19% and 11%), indicating
that they report many empty URLs. Among individual information sources, Homepage
is the best information source in terms of recall.

We observe that OFS has lower precision but higher recall than individual information

76



Chapter 4 Scaling the evaluation to 325 packages

Table 4.12: The correlation between the automated computed reliable attribution metrics
Each cell in the table denotes a pair of values: Effect (r) and P-value (p)

Name similarity Description similarity Python language PyPI badge
r p r p r p r p

Name similarity +0.25 0.000 +0.36 0.000 +0.22 0.000
Description similarity +0.17 0.002 +0.25 0.000
Python language +0.15 0.008

sources: it reports GitHub URLs for more packages but returns more incorrect URLs.
Mode URL demonstrates better precision (+6%) and significant improvement in recall
(+30%) compared to OFS. The Final URL allows us to improve the recall to 90% (+12%)
while having slightly worse precision than the Mode URL (-3%).

Next, we interpret the influences of the automatic, reliable attribution metrics on
the Final URL. Table 4.12 shows correlation analysis of the automatically computed
reliable attribution metrics on the set of 325 packages. A low positive correlation (Pearson
coefficient ranges from 0.15 to 0.36) between the metrics indicates that they independently
contribute to the final reliability score of a URL. Furthermore, all of the p-values in
Table 4.12 are less than 0.05 suggesting our results are statistically significant.

Then we compare reliability scores for URLs where the Final URL equals the Man-
ual URL and where these URLs are different. Similar to the previous analysis, we ex-
cluded 29 packages whose source code is stored in the https://github.com/googleapis/
googleapis and https://github.com/twitter-archive/commonsmono repositories since
they are treated differently in our study. Also, we have excluded 39 packages whose Final
URL was empty, regardless of whether the manually selected URL was empty or not.

Figure 4.4 shows the distribution of the automatically calculated reliability scores for
257 packages. We observe that Final URLs corresponding to the manually identified
ones tend to have a positive reliability score. In contrast, the URLs that differ from the
manually identified ones tend to have a negative score. The Wilcoxon test (p = 0.018)
confirmed that the mean values of these two data classes are not due to random error, but
that is statistically significant. Our rigorous analysis of the URLs with negative reliability
scores, where Final URLs are equal to Manual URLs, suggests that such packages often
contain libraries written in languages different from Python (e.g., C++).

EXAMPLE 10. Even though GitHub repository [164] of libsass [165] equals the package
name (+1), the descriptions on Github and PyPI are entirely different (-1), there is no
badge pointing to the PyPI package (0), and other programming languages are used in the
repository, such as C++ and Shell (-1). As a result, the final score is -1.
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The histogram reports the automatic reliability scoring for 241 out of 325 packages that we manually
analyzed. The white histogram shows the scoring distribution of the URLs in which the URL which was
found by the program differs from the correct URL, which we manually identified. As the histogram shows,
the scoring is a good indicator of the correctness of the outcome. The Wilcoxon test for the difference is
significant at p=0.018.

Figure 4.4: Distribution of Reliability Score for Final URLs
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Discussion . The proposed approach for finding GitHub URLs of a package by extracting
and combining the information sources outperforms the state-of-the-art tool OFS. More-
over, combining the proposed method with OFS appropriately (e.g., ModeThenOFS)
allows developers to extract Github URLs for many packages with high precision.

Our approach is the first to provide a set of reliable attribution metrics (Table 4.3) that
allow developers to validate whether the automatically reported GitHub URLs (either by
py2src, OFS, or similar package analysis tools) actually correspond to the expectations.
Even though we cannot apply reliable attribution metrics for automatic judgment of the
packages whose source code is stored in mono-repositories, the reported URLs are still
helpful: it is much easier to find a subdirectory corresponding to a given package in a
mono repository rather than to search for the source code location from scratch.
Summary: The proposed approach allows developers to automatically identify GitHub
URLs for PyPI packages with 83% precision and 90% recall. Furthermore, the automat-
ically identified URLs are easily verifiable due to the proposed automatically calculated
reliability score based on metrics like the similarity between GitHub repository and PyPI
package names and descriptions, the presence of a validating badge, and presence of
Python code within the top programming languages in the identified GitHub repository.

4.5 RQ2.2: Factors that explain package adoption

To find the effect of quality factors on the adoption of PyPI packages (Table 4.13),
we apply the Final URL approach to identify GitHub URLs for the 4000 top most down-
loaded packages. For the popularity factors, we used to consider the number of dependent
packages and repositories from the service libraries.io. However, our manual exami-
nation for several packages reveals a significant mismatch between the data on provided
by the service libraries.io [103] and the original GitHub repositories.5 Moreover, once
developers visit the GitHub repository, they are likely to extract all the possible informa-
tion from one place rather than start checking additional sources. Therefore, we use the
number of dependent repositories as reported by GitHub.

Starting from the 4000 packages, we exclude the following packages from our analysis:
• 498 packages whose URLs are empty, and therefore, no factors can be extracted;
• 257 packages as they point to the same GitHub repositories (mono-repositories),

and therefore, cause duplicated values of factors.
The above filter results in 3245 packages, for which we automatically extract the

5For example, as of 14 May 2021 the number dependent repositories reported on the GitHub repository
of requests library is around 910K, while libraries.io reports only around 152K dependent packages
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Table 4.13: Descriptive statistics for the values of the factors
License factor is a dummy variable that has value 1, when the license is permissive (e.g., Apache-2.0 or
MIT) and -1 when it is not permissive (e.g., GPL).

Factor Count Mean Std. dev. Min Q25% Median Q75% Max
Stars 925 2369 5085 2 207 640 2227 54 252
Contributors 925 74 121 2 17 34 75 1065
Open issues 925 85 190 0 10 27 76 1900
Closed issues 925 379 845 1 42 116 325 7880
Open/Closed issues 925 0.41 0.61 0 0.12 0.25 0.49 8
Commit frequency 925 20 45 0 3 6 18 490
Release frequency (days) 925 154 231 0 43 83 157 2420
Time to close issue (days) 925 92 94 0 28 63 121 666
Vulnerabilities 925 0.17 0.69 0 0 0 0 8
License 925 0.83 0.54 -1 1 1 1 1
Dependent repos 925 14 330 53 061 5 405 1360 5565 685 323
PyPI downloads 925 14.25M 52.27M 0.27M 0.51M 1.32M 5.17M 655.77M

quality and popularity factors. In some cases, py2src returns an empty value for some
factors (e.g., contributors, dependent repos). We verified the factors with empty values
to ensure the correctness of the tool by manually checking the corresponding factors on
the GitHub page.6 Our analysis confirms the absence of the values in such cases, and
therefore, we filter out 2304 packages that have at least a missing value in the factors.7

We further remove 16 packages that have outlying values of their factors. Eventually, we
end up with 925 packages for the regression analysis.

EXAMPLE 11. Package urllib3 (the most popular at the time of research) had more
than one billion PyPI downloads, 2603 stars, 31 commits per month on average, 52 days
on average between two releases, 137 open issues, 757 closed issues, 21 days on average to
close an issue, 236 contributors and 504 101 dependent repositories. Eight vulnerabilities
affected the package, and it has the MIT license, which is permissive.

Table 4.13 shows the descriptive statistics of the factors for the packages in our study.
We consider the quality factors (the first ten) as independent variables and the popularity
factors (the last two) as dependent variables for the regression analysis.

We first perform a correlation analysis between the quality factors to check their in-
dependence. Table 4.14 shows Pearson correlation coefficients [7] for each pair of quality

6We manually look at the factors at given paths https: // github. com/ organization/ repository/
path_ to_ factor . For example, the path to contributors factor is https://github.com/organization/
repository/graphs/contributors

7We could have assigned the zero values for the empty factors, but this might have introduced bias to
the regression analysis.

80

https://github.com/organization/repository/path_to_factor
https://github.com/organization/repository/path_to_factor
https://github.com/organization/repository/graphs/contributors
https://github.com/organization/repository/graphs/contributors


Chapter 4 4.5. RQ2.2: Factors that explain package adoption

Table 4.14: Quality factors correlations
The bold underlined values indicate the pairs of the strongly correlated factors. We exclude Contributors
and Closed issues from further regression analysis.

Stars Contrib. Op. issues Cl. issues Op/Cl. iss. Commit f. Release f. Ttc issue Vulns License
Stars +1.00 +0.64 +0.44 +0.58 -0.06 +0.36 -0.12 -0.22 +0.23 +0.02
Contrib. - +1.00 +0.66 +0.85 -0.14 +0.61 -0.24 -0.24 +0.38 +0.04
Op. issues - - +1.00 +0.74 +0.05 +0.51 -0.13 -0.22 +0.14 +0.04
Cl. issues - - - +1.00 -0.14 +0.67 -0.17 -0.26 +0.23 +0.04
Op/Cl. iss. - - - - +1.00 -0.10 +0.24 +0.13 -0.08 -0.04
Commit f. - - - - - +1.00 -0.20 -0.26 +0.17 +0.03
Release f. - - - - - - +1.00 +0.29 -0.08 -0.01
Ttc issue - - - - - - - +1.00 -0.05 -0.03
Vulns - - - - - - - - +1.00 +0.00
License - - - - - - - - - +1.00

factors. We observe that Contributors (Pearson coefficient 0.85) and Open issues (Pearson
coefficient 0.74) have a strong positive correlation with Closed issues (e.g., Pearson coef-
ficient greater than 0.7 [7]), so we exclude these factors from further regression analysis.
The correlation analysis between the two popularity factors suggests that they are inde-
pendent. Hence, we use eight quality factors (Stars, Closed issues, Open/Closed issues,
Commit frequency, Release frequency, Time to close issue, Vulnerabilities, and License)
as dependent variables and two popularity factors (number of Dependent repos and PyPI
downloads) as dependent variables for the regression analysis.

We transform the factors into logarithmic scales to allow factors with extensive ranges
for the regression analysis.8 Table 4.15 and Table 4.16 shows the regression analysis
summary for the factor Dependent repositories, and PyPI downloads, respectively.
Discussion . The number of stars has a statistically significant positive impact on the
number of PyPI downloads and Dependent repositories. Hence, we confirm the qualitative
finding that developers tend to adopt packages whose software repositories have a high
number of stars [136].

Considering security in the regression analysis, we observe that the number of Vul-
nerabilities has a significant positive impact on both popularity factors. This observation
might seem counter-intuitive: developers tend to adopt vulnerable packages. However,
the vulnerabilities are likely to be discovered in popular packages simply because such
packages gain much attention [8, 212]. Therefore, the choice of software dependencies
might be affected by vulnerabilities in their projects but should be considered together
with the other quality factors, e.g., the number of closed issues.

The number of Closed issues positively correlates with both popularity factors: we
observe a significant correlation with the number of PyPI downloads and no significant

8To process factors that have zero values, we increase them by a small precision of 0.001
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Table 4.15: Linear regression summary for number of Dependent repositories

Factor Number of Dependent repositories
Coefficient Confidence Interval P-value

Constant 1.918 [+1.696, +0.140] 0.000
Stars 0.448 [+0.387, +0.509] 0.000
Closed issues 0.112 [+0.032, +0.192] 0.161
Open/Closed isssues. -0.036 [-0.073, +0.001] 0.325
Commit frequency -0.013 [-0.045, +0.019] 0.694
Release frequency 0.089 [+0.025, +0.153] 0.167
Time to close issues. -0.040 [-0.090, +0.010] 0.426
Vulnerabilities 0.098 [+0.076, +0.120] 0.000
License -0.014 [-0.036, +0.008] 0.545

Table 4.16: Linear regression summary for number of PyPI downloads

Factor Number of PyPI downloads
Coefficient Confidence Interval P-value

Constant 6.478 [+6.285, +6.671] 0.000
Stars 0.067 [+0.013, +0.119] 0.210
Closed issues 0.1676 [+0.099, +0.237] 0.016
Open/Closed issues 0.018 [-0.014, +0.050] 0.575
Commit frequency -0.0276 [-0.056, +0.000] 0.316
Release frequency -0.144 [-0.200, -0.088] 0.010
Time to close issues -0.041 [-0.085, +0.003] 0.351
Vulnerabilities 0.087 [+0.067, +0.107] 0.000
License 0.002 [+0.002, +0.040] 0.282
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impact on the number of Dependent repositories. Thus, the intuition suggests that the
projects with many closed issues are expected to be well-supported, i.e., developers might
expect to receive support for their problems in the future.

Such intuition is also supported by the coefficients for the Time to close an issue
factor. There is a negative correlation with both the number of Dependent repositories
and PyPI downloads : the longer time of closing issues means that requests posted by
software developers receive more extended responses. Hence, software developers have to
wait longer to receive support for their problems.

When considering the fraction of open and closed issues, we observe a negative non-
significant correlation with both popularity factors: while developers might not like many
opened issues that do not receive any response, the high number of open issues indicates
existing interests for a particular package. These observations support the developers’
considerations reported by the qualitative studies [94,136].

Commit frequency negatively impacts the number of both PyPI downloads and de-
pendent repositories. This likely happens since the high commit frequency corresponds
to the immaturity of a particular package. If adopted as a dependency, such a package
might introduce bugs and security vulnerabilities. Also, many new versions of a package
(possibly containing breaking changes) will likely be released often. Moreover, developers
would have to upgrade their dependencies frequently. Several empirical studies report
that developers tend to avoid such dependencies for their projects [91,94,134,136]. How-
ever, the negative impact is not significant: high commit frequency might also mean good
support for a library.

While such intuition is also supported by the negative statistically significant impact
of the release frequency factor on the number of PyPI downloads, we observe a positive
coefficient of the release frequency factor for the number of dependent repositories. We are
likely to observe such an effect since package users prefer to stick with a specific version of
a PyPI package. At the same time, developers have higher flexibility to declare a package
without actually specifying its version in GitHub.

License is often an essential factor when adopting a software package [94, 136]. In-
terestingly, we observe a positive effect of license on the number of PyPI downloads and
a negative impact on the number of dependent repositories. However, such effects are
not significant, which might be affected by the fact that developers have a limited under-
standing of legal issues related to non-permissive licenses [191].
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Summary: We found that the popularity metrics for PyPI packages are not correlated.
Therefore, developers and researchers can use those quality factors when adopting or
studying the adoption of third-party packages. Furthermore, through the regression anal-
ysis, we confirm that number of stars, closed issues, and vulnerabilities in a package
increase the popularity of a package while the release frequency decreases it.

4.6 Threats to Validity

Threats to internal validity concerning the external factors not considered in our study:
We ignore the mono repositories in our manual validation. Mono repositories are

usually used for code collaboration between different components in an organization [143].
However, in the PyPI ecosystem, small size and less complex packages hosted by a single
repository are much more common [4]. Hence, we believe the exclusion of the mono
repositories has minimal influence on the results of our analysis.

We ignore ‘forks’ in our manual validation. We manually differentiate the forks from
the original source code repositories by using a set of measurements (e.g., number of stars
or releases). For example, a fork may have fewer stars compared to the original one, or a
fork does not contain the latest release that does exist in the package repository.

The vulnerability database used for our study may not cover all vulnerabilities that
affect PyPI packages. Therefore, this study uses the manually curated Snyk vulnerability
database that covers many publicly known vulnerabilities (e.g., the NVD database) and
includes the vulnerabilities discovered manually by the Snyk security researchers [171].
Moreover, the developers have access to the same information about existing vulnerabili-
ties. Hence, we believe that the vulnerability information used in this study is sufficiently
large and reflects developers’ awareness.

Threats to external validity concerning the generalization of results of the study:
Currently, we focus only on PyPI packages. We chose Python packages because it

is the second most popular general-purpose language [126]. PyPI is the official registry
of Python packages, forming an ecosystem comprising over 300 000 projects (as of April
2021). The analysis of package adoption factors can be enlarged to other language-based
ecosystems, like npm or RubyGems. Although py2src relies on the information in PyPI,
researchers can also extend it to packages in the other ecosystems.

We only consider repositories hosted on GitHub. GitHub is the most popular web-
based software repository for PyPI packages [31] and mentioned by our interviewed de-
velopers in Chapter 3 (Observation O5). However, it is trivial to extend py2src to other
web-based repositories, e.g., GitLab or Bitbucket, by tweaking our existing crawler and
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parser with specific characteristics of these platforms.
We only considered the top-downloaded packages hosted on PyPI out of more than

300 000 packages. Top popular packages usually have a tremendous adoption by other
packages across the ecosystem [18, 221]. The package adoption percentage is closer to
100% when considering all PyPI packages. Hence, we believe that the reported results of
our empirical study are representative.

Threats to construct validity concerning the accuracy of py2src:
Some errors might be introduced during data collection as py2src relies on GitHub

APIs (with limited rate limit) and web scraping. However, three researchers carried out
manual spot checks on the results of each crucial step to confirm that the tool operates
correctly. Hence, we believe that this threat is minimal.

4.7 Conclusions

This chapter presented the automatic approach to identify GitHub URLs that corre-
spond to PyPI packages and empirically validated the qualitatively identified factors [94,
136] that developers refer to while selecting new libraries for their projects.

The proposed information sources have enabled us to obtain more precise URLs com-
pared to the state-of-the-art tool OFS. Furthermore, a set of reliability metrics provided
by our approach facilitates verification of the reported URLs.

The regression analysis of the package quality factors showed that, for the actual
selection of a new package, a developer could rely on the number of Stars, Closed issues,
Release frequency, and the number of discovered and fixed vulnerabilities in the package.

To facilitate reproducibility, the py2src tool and the data used in this paper are
available at [168].
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5
LastPyMile: Identifying the Discrepancy
between Sources and Packages

“You can’t trust code that you did not totally create yourself.”

– Ken Thompson

Open-source packages have source code available on repositories for inspection (e.g., on
GitHub), but developers use pre-built packages directly from the package repositories (such as
npm for JavaScript, PyPI for Python, or RubyGems for Ruby).

Such convenient practice assumes that there are no discrepancies between source code and
packages. Unfortunately, these differences pose both operational risks (e.g., making dependent
projects unable to compile) and security risks (e.g., deploying malicious code during package
installation) in the software supply chain.

Our empirical assessment of 2438 popular packages in PyPI with an analysis of around 10M
lines of code shows several differences in the wild: modifications cannot be just attributed to
malicious injections. Nevertheless, scanning again all and whole ‘most likely good but modified’
packages is hard to manage for FOSS downstream users.

We propose a methodology, LastPyMile, for identifying the differences between built
artifacts of software packages and the respective source code repository. We show how it can
be used to extend current package scanning practices for malware injection (which only covers
less than 1% of the code of deployed packages).
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5.1 Goal and Research Questions

One benefit of FOSS is that source code and additional metadata are publicly available
for audit, review, and even modification. Developers rely on this information (e.g., number
of GitHub stars, number of downloads from the service called libraries.io) to decide
whether to add a FOSS project as a software dependency into their projects [94, 136].
Organizations with high-security requirements, e.g., government organizations or vendors
of commercial enterprise software, commonly establish vetting processes to ensure the
quality and security of third-party software and services [40, 127]. In the case of FOSS,
this evaluation is performed mainly by manual reviews and automated scans of the source
code repository of each dependency [41].

In theory, once code is checked, developers could download software dependencies
as source files in tarballs and build them in-house. However, this process can be time-
consuming and requires knowledge of the build systems [81].

In practice, developers download pre-built packages from repositories (such as npm for
JavaScript, PyPI for Python, or RubyGems for Ruby) under the comfortable assumption
that no discrepancies are introduced in the last mile between the source code and their re-
spective packages. However, such differences might be introduced by manual or automated
build tools (e.g., metadata, Python bytecode files) [68] or for evil purposes. For example,
a backdoor was inserted into the PyPI package ssh-decorate to collect the users’ SSH
credentials and exfiltrate them to a remote C&C server [35].

Reproducible builds in Subsection 2.7.2 could be a solution. However, for it to be
practical, modifications need to be the exception rather than the norm. Unfortunately,
the opposite is true on the field. Indeed, in the npm ecosystem, packages are not easily
reproducible from the source code [68]. The same applies to the PyPI ecosystem (see
Subsection 5.4 for more discussions).

In the absence of reproducible builds, a vetting process must be extended to cover the
risk of malicious code injection in the last mile. Since applications have many direct and
transitive dependencies, and because every new version must be verified, scalability and
integration with existing security review pipelines are critical.

These requirements clash with the resources at hand for FOSS repositories: less than
ten PyPI administrators oversee 400 000 package owners (See Subsection 2.2). At the
time of writing, for every new upload, PyPI’s vetting pipeline only checks a script called
setup.py for malicious code that would execute upon package installation [204]. Although
setup.py is commonly targeted by attackers, malicious code is also injected in other lo-
cations. Other approaches also require a significant effort to reduce false positives [48]
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and to improve the quality of hand-crafted signatures [128]. While suspicious packages or
updates might be flagged, too many false alerts are generated for benign packages [118].
In the year 2020, the administrators had to evaluate 1874 new updates per day, with an
average of 3500 files generated by more than 76 997 developers [31]. Thus, the cost of
even a single false positive in the evaluation must be multiplied by those numbers.

A key observation is that in code injection attacks, only a minimal part of the codebase
is modified [200]. Therefore, one could focus on the last mile differences between the source
code and the submitted packages. Hence our first question:
RQ3.1: Can we effectively and efficiently identify differences?

A basic solution already exists: git log. For each line in an artifact, we check
whether it is (or at least was) in the repository at some point. By iterating over all
commits (revisions), we ensure that we collect everything in the source code repository,
and we eliminate the need for identifying the pair of Git release/tag and PyPI release
to be compared. Unfortunately, that does not scale as git log needs to loop over all
revisions and spawns a heavy git process each time it is invoked. We could also use diffing
techniques [2,68], but they require a mapping of each PyPI release onto the corresponding
Git tag or release, which does always exist.

Our algorithm LastPyMile is a feasible alternative to this problem. By cleverly
combining package scraping and artifact hashing, we can extract these differences in a
scalable way. Then, we can analyze how big is the gap in the field:
RQ3.2: How big are the ‘normal’ differences between the code in source control (Github)

and package (PyPI) repositories?
We show that such differences are pervasive for more than 2000 popular packages in

the PyPI ecosystem. If a package code differs from the published source code, one cannot
assume that it has been maliciously modified. Differences are too many (65% of artifacts
and 22% of files in our sample) and too diverse for reproducible builds to be a solution.
However, only a few modifications happen in Python source files (2.6% of files), so that
vetting might be a feasible alternative.

Finally, we can try to determine whether this solution can make a difference on the
end goal: improving the vetting and coverage of scanners while keeping the number of
false alerts manageable for PyPI maintainers given the imbalance ratio between the PyPI
maintainers and the number of packages [201].
RQ3.3: Can LastPyMile be combined with package scanners while keeping the number

of alerts manageable by a human?
To be effective in the field, we should allow developers and development organizations

to use the same tools to scan the source code repository of a package as part of their vet-
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Figure 5.1: LastPyMile in the context of the overall security review pipeline

ting process. Without protecting their investments in licenses, workflows, and developer
education, an excellent technical solution would be doomed to fail. We show that such
an approach is possible with LastPyMile .

5.2 RQ3.1: LastPyMile to improve the efficiency of
identifying code injection

The upper part of Figure 5.1 shows the typical process of the security review process
of package repositories (e.g., PyPI) for identifying suspicious artifacts that might occur
during the release of a software project. First, the code in the published artifact is
undergoing code review and scanning by the PyPI Administrators by running security
checks [204]. Currently, they are using two checks called SetupPatternCheck and
PackageTurnoverCheck (see Subsection 5.5).

Depending on the automated tool used by the maintainers, this scanning could be
done on the entire artifact for backdoor injection (e.g., Bandit[144]) or on its files (e.g.,
Malware Checks [204]). Then the output of the scan is used to decide whether the
artifact should be uploaded to the package repository.

The bottom part of Figure 5.1 shows how LastPyMile can augment the traditional
security process. As a preliminary, LastPyMile looks for the GitHub URLs of a PyPI
package in various places, including package metadata, PyPI, and package homepage.
Table 5.1 shows the number of GitHub URLs we found. Most of the packages declare
their GitHub repositories in the metadata available on PyPI.
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Table 5.1: Number of source code repositories found by locations
Metadata of a package contains multiple fields such as Homepage, Codepage. Package Homepage is the
main page that contains additional information about a package (e.g., documentation).

Location #GitHub Repos Percentage (%)
Homepage (Metadata) 2618 77.9
Codepage (Metadata) 68 2
Package Homepage 1418 42.2
PyPI Homepage 1974 58.7
Total GitHub Repos 3662 100

Step 1 Hashing files and lines from source code repository
Require: The Github URL of the package: GithubURL

1: Set of file hashes in the repository Hs : []
2: Set of lines of files in the repository Ls : []
3: Cloned_Dir = CloneRepositoryToDisk(GithubURL)

4: Commits = GetCommitsFromRepo(Cloned_Dir)

5: for each c ∈ Commits do
6: Fs ← CheckoutFilesInCommit(c)

7: for each f ∈ Fs do
8: H ← H ∪ SHA256 (f )

9: L← L ∪ ReadFile(f )

10: return Set of file hashes, lines: Hs , Ls

In Step 1, LastPyMile iterate all commits to compute all file hashes and collect
line contents from a source code repository. To ensure that all the files and lines are
collected, LastPyMile processes commits from all branches and tags in the GitHub
repository. LastPyMile supports processing the GitHub repository in parallel so that
multiple commits can be processed simultaneously. Besides, to avoid processing the same
commits in different branches, LastPyMile maintains a shared set of already processed
commits for synchronizing the processing tasks.

EXAMPLE 12. 18 distributed artifacts nameko-3.0.0.rcX contain the source code that
is stored in the v3.0.0-rc branch.

After collecting all the file hashes and lines from the Github repository, in Step 2,
LastPyMile processes an artifact to calculate file hashes and collect file lines. Finally,
LastPyMile compares file hashes and lines of distributed artifacts and those in the
source code repository to report the phantom files and lines (Step 3).
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Step 2 Hashing files and lines from an artifact
Require: A, the PyPI package artifact to be evaluated
1: Set of file hashes in an artifact Hp : []
2: Set of lines of files in an artifact Lp : []
3: Artifact URLs: As = ObtainArtifactURLs(p)

4: Local_Artifact ← DownloadArtifactFromPyPI (A)

5: Fs ← UncompressArtifact(Local_Artifact)

6: for each f ∈ Fs do
7: H ← H ∪ SHA256 (f )

8: Ls ← ReadLinesFromFile(f )

9: for each l ∈ Ls do
10: Lp ← L ∪ l

11: return Set of file hashes, lines: Hp , Lp

Step 3 Identifying phantom files and lines in distributed artifacts
Require: Hs ,Ls ,Hp ,Lp

1: Set of phantom files: Hd : []
2: Set of phantom lines: Ld : []
3: for each h ∈ Hp do
4: if h /∈ Hs then
5: Hd ← Hd ∪ h

6: for each l ∈ Lp do
7: if l /∈ Ls then
8: Ld ← Ld ∪ l

9: end if
10: end if
11: return Set of phantom files hashes, lines: Hd , Ld
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Table 5.2: Running time comparison between LastPyMile and git log approaches
Both approaches had been run in the same environment. The differences obtained by both the approaches
are the same (e.g., number of phantom files and lines).

Package git log (seconds) LastPyMile (seconds)
certifi 1244 48
idna 408 34
six 315 145
s3transfer 1095 44

Table 5.3: Number of unique phantom files and lines versus total
The columns on the left are the files and lines processed by the PyPI Malware Checks and existing
scanning tools, while LastPyMile only processes the phantom files and lines on the right. Phantom files
are counted by their unique hashes

#Total #Different
setup.py All setup.py All

#Files 4056 90 143 2532 16 170
#Lines 38 750 14 027 895 7236 939 772

LastPyMile takes only 0.04 seconds for scanning jellyfish artifact that consists
of 530 unique files and 28 104 lines on a laptop with four CPU cores and eight GB RAM.
Considering the top four most downloaded packages six, idna, python-certifi and
s3transfer as shown in Table 5.2, LastPyMile is 16x faster than the default iterative
approach that relies on calling git log command for every line of an artifact because
LastPyMile preproceses all commits in a repository and require only a single pass over
all code, while git log have to iterate over all revisions each time it is invoked.

Table 5.3 compares the number of total files and lines present in the analyzed files with
the phantom files and lines reported by LastPyMile. We observe that more than half
of setup.py files are phantom, while the number of phantom lines of code in the setup.py
files is six times smaller than the total number of lines in setup.py files.

Globally the number of phantom lines of code is 16 times smaller. Table 5.4 shows
that a median artifact contains two phantom lines that include at least one API call (e.g.,
a line of code executes some API calls) and two lines that import some library.

Summary: LastPyMile enables checking the entire codebase of a published artifact
16x faster than the baseline git log approach, as LastPyMile requires only a single
pass over all commits.
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Table 5.4: Descriptive statistics about phantom lines in the artifacts

Mean Min Q25% Median Q75% Max

#APIs 4 1 1 2 3 946
#Imports 2 1 1 2 3 12

Table 5.5: Descriptive statistics of GitHub repositories for the selected packages
Tags includes Github tags and branches of a Github repository. Unique files and lines are determined by
their hashes and contents, respectively.

Number of Mean Min Q25% Median Q75% Max
Tags 29 1 9 19 36 678
Commits 477 2 91 232 548 10 730
Unique files 97 3 14 29 68 17 000
Unique lines 53 1 6 17 43 8732

5.3 Data collection

To select the sample of Python packages for our study, we start with the list of the
top 4000 most downloaded packages [192], which is the established approach to study the
Python ecosystem, adopted both in academia [31] and industry [123] and [45].

We identify 3662 packages (more than 91% of the selected PyPI packages) that use
GitHub to host their source code. Among these packages, 3336 are unique repositories
(83%). For simplicity, here we focus only on packages that claim their source code is on
GitHub. Table 5.5 shows the characteristics of the collected repositories. Three reposito-
ries have only two commits1, while several repositories had tens of thousands of commits
(e.g., the Github project pip has 10 730 commits2).

As we aimed to have a tool to be runnable “as you wait” [159], we set a timeout
period of five minutes for analyzing all artifacts of a given package. As a result, the
selected packages resulted in 109 062 artifacts. We had to exclude 15 810 artifacts (14%)
belonging to ‘surviving’ packages with early versions being developed on versioning control
systems other than Git and/or with the commit history not being included when moving
to GitHub. Therefore, we could not use them in our analysis as there was no source code
to compare. The final dataset comprises 93 252 artifacts from 2438 packages, 65% of them
are gzip, 29% are wheel, 4% are zip, and 2% are eggs.

After checking the differences between the number of different files and code lines be-

1For example, https://github.com/datamade/probableparsing
2At the time of data collection
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Figure 5.2: Number of files differing between source and package

tween source and package repositories (Figures 5.2 and 5.3, respectively), we observed
that 66 artifacts featured a vast number of changes (>1000 different files). We manually
analyzed those artifacts and found that the explanation lies in “developers moving stuff
around” across repositories, making it nearly impossible to identify source code reposito-
ries automatically. The case in Figure 2.3 requires one to actually read the documentation.

Besides the robotframework-selenium2library in Example 2.3, we found that the
package sas7bdat first hosted its source code on GitHub but then was moved to Bit-
Bucket. The other reason for not being able to locate the corresponding source code of a
package automatically is the usage of submodules [208] by developers. We removed such
artifacts from our analysis as their source code could not be found automatically. Hence,
the final list of analyzed artifacts comprises 93 252 artifacts. Table 5.6 summarises the
number of analyzed packages and corresponding artifacts.

EXAMPLE 13. The gsutil package refers to the Github repository located at the URL
https: // github. com/ GoogleCloudPlatform/ gsutil with two submodules. We could
not find any related GitHub tag/release for Pyrogram-0.8.0-py3 and Pyrogram-1.0.3.3

3Our manual analysis of these packages did not reveal malicious injections.

94

https://github.com/GoogleCloudPlatform/gsutil


Chapter 5 5.3. Data collection

0 1000 2000 30003000
101

102

103

104

105

#Unique lines

Figure 5.3: Number of lines differing between source and package

Table 5.6: Number of processed packages and artifacts
The processing time threshold is set for a package. We exclude artifacts that predate the creation time of
a Github repository

Data Processing Step Result
Top-most downloaded packages 4000
Number of processed artifacts (processing time < 5 minutes) 109 062
Number of artifacts in GitHub (excluded very early artifacts) 15 810
Number of final artifacts (automatically linkable to source) 93 252
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Figure 5.4: Percentage of different kinds of changes in artifacts and files

5.4 RQ3.2: Differences between source code and pack-
age repositories

To answer RQ3.2, first, we compared the code distributed in PyPI artifacts with the
corresponding source code repositories. Figure 5.4 shows that 65% of artifacts and 22%
of files present in PyPI have differences with respect to the source code repository. For
example, malicious code might be injected during the package release process. However,
only 5.8% of artifacts and 2.6% of files have changes in Python files, while 59% of artifacts
and 19% of files have differences in other files. These findings suggest that it might be
promising to limit the process checking for malicious injections to those artifacts and files
that have discrepancies, as the other artifacts cannot have malicious injections during the
release process. In this work, we focus on the changed Python files as they might be the
target of attackers for injecting executable malicious commands.

Metadata files greatly impact the number of discrepancies between source code and
package artifacts. Table 5.7 shows that a median artifact has four metadata files4 and

4We identified metadata files as generated by packaging tools (e.g., WHEEL), dependency declaration
files (e.g., requirements.txt), and documentation files (e.g., README.md)
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Table 5.7: Differences between package artifacts and their source code repositories
Unique files are the files having different hashes while the number of lines are the total number of lines
in an artifact

#Files Mean Min Q25% Median Q75% Max
Number of Unique Phantom Files

Python 9 1 1 1 6 994
Metadata 4 1 3 4 5 19

Number of Phantom Lines
Python 19 2 2 4 12 1988
Metadata 8 2 6 8 10 38

Table 5.8: Top different phantom Python files in our sample.
Phantom files are present in the package source code but have different content than the omonimous file
in the source code repository. The same file name might occur multiple times in the same package with
different paths. __init.py__ and setup.py are the most common phantom files.

Filename Number of Phantom files Percentage (%)
__init__.py 36 480 14.5
setup.py 7414 3
_version.py 4152 1.7
version.py 3260 1.3
utils.py 2354 1
v1.py 1498 0.6
v2.py 1498 0.6
base.py 1404 0.6
client.py 1050 0.4
exceptions.py 1008 0.4

nine Python files (twice more). This difference is also visible at code line level: a median
artifact has 2-8 lines and 18 lines in phantom metadata files and Python files, respectively.

We observe that nearly 15% of Python files that have differences with respect to the
source code repository are the initialization __init__.py and installation setup.py files
(Table 5.8). This happens most likely because the building tools introduce additional
information (e.g., timestamps, versions) into these files during the packaging process.
Similarly, the _version.py and version.py files are used to automatically identify the
package version from a Git tag or release.

Table 5.9 shows the top ten regular and API calls related to networking and system
in the Python files that differ from the source code repository. Many files have calls to
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Table 5.9: Top ten API and Sensitive calls in modified Python files
API calls are grepped from the line contents using a set of regular expressions. We exclude some internal
calls of the packages.

Top API Calls Occurences Networking & System Calls Occurences

__init__ 72 413 urlopen 793
isinstance 55 115 socket.socket 711
datetime 37 393 subprocess.Popen 670
ttinfo 37 258 exec 580
len 36 325 request 541
read 31 582 http.request 511
getattr 21 575 s.setsockopt 413
super 16 760 requests.post 323
hasattr 16 358 request.get 317
join 13 869 os.chmod 303
append 12 548 platform.system 292

such functions as urlopen, socket.socket, request to open URLs and make HTTP requests,
subprocess.Popen and exec to open files. Usage of these functions could be harmful. At the
same time, these functions are often used for legitimate operations, and one cannot simply
mark all lines that include a call to “possibly suspicious” APIs as “actually suspicious” –
there would be an unmanageable number of false alerts.
Summary: The code distributed via package repositories has many changes with respect
to the code stored in the corresponding source code repository. On average there are 5.8%
of artifacts and 2.6% of files have changes in Python files.

5.5 RQ3.3: LastPyMile combined with other package
scanners

Combining LastPyMile with existing security scanners is essential for two reasons:
First, it allows the reuse of mature detection techniques of FOSS and commercial security
scan tools. Second, by doing so, developers and development organizations can use the
very same tools in different stages of the security review process, which protects their
investments into software licenses, the design and implementation of review workflows,
and developer education.

As shown in Figure 5.1, PyPI Administrators can achieve the reuse by filtering either
the input or the output of such security scanners. They can feed package scanning tools
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operating on single files (Malware Checks), modules, or procedures (Bandit Checks)
with input containing phantom lines, which is expected to reduce the number of irrelevant
alerts and the tool’s runtime. Scanning tools performing the whole program or inter-
procedural analyses continue to work on the package’s entire code base. Still, their output
can be filtered to only show findings in phantom lines.

In this experiment, we focus on input filtering and show the results of combining
LastPyMile with two well-known malware checking tools that are broadly used in the
PyPI ecosystem:

• Warehouse Malware Checks [204] tool is used by PyPI to check suspicious code
in uploaded packages. At the time of writing, the tool supports two checks: Setup-
PatternCheck [206] for performing regular-expression based checks of the con-
tent of setup.py files on package upload and PackageTurnoverCheck [205] for
performing daily scans for suspicious behavior about package ownership changes.
Conceptually Malware Checks is close to other open-source tools for auditing
FOSS packages [117,118] that rely on regular expressions to the whole artifact.

• Bandit [144] is the tool developed by the Python Code Quality Authority. Bandit
was designed to find common security issues in Python code by scanning all the files
included in a software artifact. For each file in the artifact, the tool creates an ab-
stract syntax tree (AST) representation and performs rule-based analysis (plugins)
of the AST nodes. Most of the Bandit rules focus on the vulnerabilities in Python
code (e.g., start a process with a function vulnerable to shell injection).

For the Malware Check tool, we focus on the SetupPatternCheck check. Even
though the tool currently scan only setup.py files, we have extended it to scan all Python
files of a package artifact.

For the Bandit tool, we have used the default set of Bandit rules and then extended
them with additional rules so that the tool can find all malicious lines of code injected into
Python packages known to be used in typosquatting/combosquatting attacks [129, 201].
In addition, our ruleset checks for suspicious API calls (e.g., exec), imports (e.g., socket),
and strings (e.g., an URL). We have open-sourced the detection rules on Github at [196].

To illustrate how the malware checking tools perform on the package artifacts without
malicious payloads, we compare their outcome on three example benign artifacts that
correspond to the following malicious artifacts. We collected the following malicious
artifacts from the real attacks by contacting the researchers who reported the attacks:

• urlib3-1.21.1 – The malicious code was injected into the setup.py file. It triggered
automatic extraction of data and sending it to a remote server using the standard
library socket [55].
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Table 5.10: LastPyMile on Malware Checks and Bandit alerts
Malware Checks Alerts (X rules on Lines), while Suspicious Bandit Alerts (Y rules on Files).
The setup.py column of Malware Checks Alerts is what happens now in PyPI [204].
Artifact Type

In
se
tu
p.
py Problem Size Malware Checks Alerts Suspicious Bandit Alerts

#Files
#LoCs
(all files)

#LoCs
(setup.py)

Coverage
(setup.py)

setup.py
whole
pkg

LastPy
Mile

setup.py
whole
pkg

LastPy
Mile

urllib3-1.26.3

Be
nig
n

80 25 348 97 0, 4% 1 260 0 8 1398 0

requests-2.25.1 32 9325 112 1, 2% 3 57 0 9 505 0

setuptools-53.0.0 244 70 794 162 0, 2% 4 2932 0 5 762 0

urlib3-1.21.1

M
ali
cio
us Y 72 20 448 197 1% 4 177 3 20 1044 12

request-1.0.117 N 3 166 52 31, 3% 2 8 2 5 27 20

setup-tools-36.0.1 Y 112 31 245 304 1% 8 1289 3 21 489 12

• request-1.0.117 – while the installation setup.py file contains the code to trigger
the malicious execution from the hmatch.py file, the actual malicious functionality
was implemented in the hmatch.py file: scanning the computer network and sending
results to the remote server using the urllib3 library [188].

• setup-tools-36.0.1 – the malicious code was injected into the setup.py file trig-
gering automatic extraction of sensitive data and sending it to the remote server via
the Python built-in socket library.

Table 5.10 shows the results of Malware Checks and Bandit tools’ scans of the
selected artifacts. Since the Malware Checks tool was primarily designed to scan only
setup.py files, we report the number of findings the tools produced on the setup.py file.
Then we present the number of alerts when we run the tools on the whole package. Finally,
we show the number of alerts the tools produced on the lines of phantom code as reported
by LastPyMile. The source code of LastPyMile is available on Github at [197]. The
replication package for Table 5.10 can be obtained at [203].

We observe that Malware Checks produced at most three alerts on each of the
benign and malicious artifacts when only the setup.py file was considered. While this
amount of alerts is manageable by humans, checking only the setup.py files allows one to
have coverage of around 1% of the total code base of the analyzed artifacts, except the
malicious request artifact where scanning setup.py has generated coverage of 31.3%.

When Malware Checks was executed on all files from the package, the number of
alerts rockets to 2-3 orders of magnitude. Notably, the tool produced more alerts on the
benign artifacts than on the malicious packages. This phenomenon corresponds to the
more extensive code base of the legitimate artifacts.

We observe similar behavior of the Bandit tool. When applied on the setup.py, the
tool generated alerts both on benign and malicious artifacts. However, Bandit produced
significantly more alerts on the malicious artifacts. We observe many alerts when looking
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at the alerts generated after running the tool on the entire package. Notably, looking only
at the number of alerts, one could not distinguish between benign and malicious artifacts:
the number of alerts produced on the benign artifacts exceeds the number of alerts on the
malicious artifacts.

After applying LastPyMile to the tool results after running them on the entire ar-
tifacts, we observe a significant reduction of the number of alerts for both tools. For
example, Bandit tool produced only 12 alerts (out of 1044) after applying LastPyMile
on the results of the urlib3-1.21.1 scan. Similarly, the number of alerts produced by
Malware Checks on the setup-tools-36.0.1 reduced to 12 instead of 489. Further-
more, looking at the outcome of the benign packages, we observe that LastPyMile
reduced the number of alerts to zero.

Being applied to setup.py files only, Malware Checks tool generates several alerts
manageable by humans. However, scanning only setup.py files does not guarantee the
artifact to be free from malicious code as 99% of the codebase is not checked. Furthermore,
the number of alerts that both tools produce after scanning the entire artifacts (3249 and
2665 false alerts for Malware Checks and Bandit respectively) demonstrates that
such analysis does not scale for an ‘on-upload’ analysis by PyPI maintainers.

In contrast, LastPyMile shows an excellent potential to improve the scanning re-
sults. First, it makes the number of alerts after running a tool on the entire artifact
comparable with the current number of alerts generated by the Malware Checks. Sec-
ond, we do not observe any alerts for benign artifacts, which allows us to easily distinguish
benign and malicious artifacts in our manual validation of the alerts.

When running on all malicious code packages in our dataset, we were able to preserve
all malicious alerts and did not introduce false positives over the current scanning process.

Those properties make LastPyMile a good candidate for software vetting processes
of government organizations or other OSS consumers with high-security requirements. In
addition, the review effort is manageable, even though typical development projects have
dozens of dependencies with more or less frequent release and patch cycles.

Summary: LastPyMile reduces the number of alerts produced by a malware checking
tool to a number that a human can check. We checked our approach against known mali-
cious packages, and we found that LastPyMile can detect all of them. Also, it removes all
the alerts from benign packages, allowing a clear distinction between benign and malicious
packages.
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5.6 Threats to Validity

The validity of the results reported in this chapter is impacted by several choices made
during tool and experiment design.

We only consider repositories hosted on GitHub In our dataset, there are 56 packages
hosted in BitBucket [28], 14 packages hosted in Gitlab, 13 packages hosted in the Source-
Forge [175], 19 packages are hosted in Google Code [37], and four of them had been moved
to GitHub [63]. In addition, Github is the main platform reported by our interviewed de-
velopers in Chapter 3 (Observation O5). We believe that there are no significant obstacles
to cover other version control systems and extend the current implementation to other
Git service providers (e.g., GitLab or Bitbucket) as long as they support code commits
(e.g., Apache Subversion).

We only consider the original repository of a package. The main reason for this decision
is that a fork may not contain the new (recently) releases that exist in the package
repository. Therefore, comparing the artifacts in the package repository and the forks of
the original repository will clearly lead to mismatches that we could have avoided.

The current implementation focuses on the Python packages in PyPI and Python
files in particular. The extension to other Python ecosystems (e.g., AnaConda) [10], and
interpreted languages and other file types seem straightforward (e.g., Node.js/npm [125]
and Ruby/RubyGems [157]). However, we only considered the top 4000 packages hosted
on PyPI out of more than 250 000 packages. A more significant number of packages would
need to be considered for an ecosystem analysis.

By design, LastPyMile checks only the code absent from source repositories even
though malicious code could also be included in the versioned code, either directly or in
tests. For example, this was the case of the Pillow Python framework that was flagged
by more than 15 Antivirus vendors [152]. However, this situation lays out of the scope of
the chapter, as the test files should have been spotted during the source code review.

We limit the line-by-line analysis to files with file extension .py. The main reason
driving this design decision is to focus attention on files whose discrepancies, compared
to what users can view in the respective source code repository, can alter the program
flow (e.g., when downstream users install an artifact in their development environment or
invoke its API as part of their development project).

Other phantom files might be also be used to inject malware. For example, the phan-
tom files under the test directories are required by a popular testing framework like
pytest. Another source of phantom files is the upload of modules specific to the de-
velopers’ development environment. Unfortunately, they are usually not versioned with
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Git.

EXAMPLE 14. The phantom files in pydruid-0.5.4.tar.gz are the manually built
Python packages stored in the site-packages directory. We can verify the origin of the lo-
cally installed modules by comparing their code files with the corresponding GitHub reposi-
tory. We can use LastPyMile to check the code files in the local module called traitlets
(e.g., https: // github. com/ ipython/ traitlets ) of pydruid-0.5.4.tar.gz belong
to the corresponding repository [83].

Moreover, PyPI packages contain other executable files, e.g., Windows portable exe-
cutables, OSX disk image files, or C/C++ static libraries. For example, we found many
Python bytecode files (ending with .pyc). These files should not be uploaded to PyPI
as this can make the dependent package (e.g., a Debian package) fail to compile [67].
Investigating these cases would require a distinct paper.

We only check additions of code lines in the present version, even though a vulnerability
could be introduced by deleting lines from a software artifact (e.g., removing a sanitizing
statement). Albeit LastPyMile does not report the deleted lines in such a case, it could
detect that the files in the uploaded artifacts are different as their hashes would differ if
compared to the hashes of the files stored in the corresponding source code repository.
Limiting the false alerts, in this case, would require special care to avoid that the whole
file being reported as different. Therefore, we leave this case for future work.

Some packages contain code automatically generated by tools like Swagger Code-
gen or Python distutils. The current implementation of LastPyMile would cause
conceptually false positives as such files do not conceptually differ from phantom files.
These cases of automatically generated files could be checked by applying the same code
generation tool on the code files in the Github repository and comparing with the files in
published artifacts.

5.7 Conclusions

We investigated the discrepancies between published artifacts and source code repos-
itories to understand the risk of malicious injections during the software release process.
Our empirical analysis of 2438 most downloaded PyPI packages shows that there exist
differences between packages in PyPI and the corresponding source code repositories at
different levels of granularity (artifacts, files, and lines). The differences are attributed to
developers and automated tools (e.g., packaging tools) and could impact the consumers,
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e.g., causing compilation issues or representing a potential for containing malicious code
injections.

The flexible combination of LastPyMile (as input/output filter) with other security
tools offers the possibility to reduce the number of findings and the time required by
vetting processes. For example, we instructed Malware Checks and Bandit to only
consider phantom code as input. The resulting decrease in false alerts makes it promising
to use LastPyMile as an additional check in the PyPI vetting processes with minimal
impact on review efforts.

The source code LastPyMile is available on Github at [197]. The replication package
is available at [203], and we plan to submit LastPyMile as a new check to PyPI [145].
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6
Please hold on: more time = more patches?
Automated program repair as anytime
algorithms

“Much of the effort in modern programming goes into the testing and repair
bugs.”

– Fred Brooks

Automated program repair (APR) techniqus were designed to generate bug-fixing patches
for software bugs automatically. The first APR tool called EXP proposed by Stumptner and
Wotawa [178]. Typically, APR tools accept a buggy program and a set of test cases, and
output a patch that passes all the test cases. Current evaluations of automatic program
repair (APR) techniques focus on tools’ effectiveness, while little is known about the practical
aspects of using APR tools, such as how long one should wait for a tool to generate a bug fix.
This chapter empirically studies whether APR tools are any time algorithms (e.g., the more
time they have, the more fixes they generate, so it makes sense to trade off longer time for
better quality). Our preliminary experiment shows that the amount of plausible patches, given
exponentially greater time, only increases linearly or not at all.

6.1 Goal and Research Question

Automated program repair (APR) techniques were designed to automatically search
for (i.e., generate) candidate patches for software bugs that might be plausible ones (pass-
ing all tests) and then possibly correct ones (actually fixing the bug). An essential class
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of search-based techniques is that of anytime algorithms [220], which tries to capture a
necessary trade-off:

Anytime algorithms give intelligent systems the capability to trade deliber-
ation time for quality of results. This capability is essential [when] it is not
feasible (computationally) or desirable (economically) to compute the optimal
answer [. . . ].

Our long-term Goal in this chapter is to understand whether APR techniques are
anytime algorithms so that it makes sense to wait longer to obtain better results. An ideal
tool should be efficient enough in providing results (reports or patches) to developers or
other elements in the software development chain (See the discussion of Observation 16).

Empirically, Durieux et al. [49] studied 11 APR tools but only showed that most of
the repair attempts resulted in an error or terminated with a timeout. By constraining
the search space, Qi et al. [154] showed that the number of patch candidates can vary
significantly, which might impact the number of plausible patches. In this direction,
Martinez and Monperrus [113] showed that an additional time budget might result in a
higher number of plausible patches. However, the authors did not investigate how long
one needs to wait. To the best of our knowledge, we do not find a study investigating the
impact of different time budgets.

In this chapter, we report the answer to the question:
RQ4.1: By doubling the time budget of an APR tool, do we get twice more plausible

patches?
We follow the methodology used to evaluate the anytime algorithms [77] to compare

the number of patches generated by five open-source APR tools on a set of 5 benchmarks
that are commonly used in APR community for evaluation. For instance, the benchmark
Defects4J [86] was used in 22 of 24 papers studing repair tools for Java [49]. Our prelim-
inary results show that having exponentially more time, APR techniques produce only a
linear or no increase in plausible patches and do not seem to have the trade-off ability for
being anytime algorithms.

6.2 Benchmarks for Automated Repair of Java Pro-
grams

Different benchmarks are used to evaluate the performance of APR tools. The datasets
typically contain the three following elements:
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• Buggy programs
• Passing test cases
• Failing test cases

Besides, a benchmark should provide information about how to compile the bug,
locations of test cases. Below are the common benchmarks used by APR community.

Defects4J [86] contains 835 bugs from 17 open-source Java projects. The bugs were
mined with the support of bug tracking systems. The dataset was initially proposed to the
software testing community, and it has been extensively used in program repair studies.
The framework can be found on Github at https://github.com/rjust/defects4j.

Bugs.jar [160] contains 1158 bugs from eight Apache projects. The dataset was created
using the same strategy than Defects4J, but contains high number of bugs. The dataset
can be found on Github at https://github.com/bugs-dot-jar/bugs-dot-jar.

Bears [110] contains 251 bugs from 72 different GitHub projects with an average size
of 62 597 lines of code. It was created by mining software repositories based on commit
building state from Travis Continuous Integration. Bears has the largest diversity of
projects compared to previous benchmarks of bugs. The dataset can be found on Github
at https://github.com/bears-bugs/bears-benchmark.

IntroClassJava [51] contains 297 bugs from six different student projects. It is a
transpiled version to Java of the bugs from the C benchmark IntroClass [99]. In the
transpiled version, the projects have on average 230 lines of code. The dataset can be
found on Github at https://github.com/Spirals-Team/IntroClassJava.

QuixBugs [104] consists of 40 Java and Python programs from the Quixey Challenge.
Each contains a one-line defect, with passing (when possible) and failing testcases. Each
program corresponds to the implementation of one algorithm such as QuickSort, and
contains on average 190 LOCs. This is the first multi-lingual program repair benchmark.
The dataset can be found on Github at https://github.com/jkoppel/QuixBugs.
Summary: Many program repair benchmarks are available for Java compared to other
languages such as Python. In addition, the used benchmarks of different sizes come from
both real and toy projects to ensure the diversity of the experiments.

6.3 Automated Program Repair Techniques

There are three main automatic program repair categories: Generate and Validate,
Semantic-based and Metaprogramming-based [61].
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6.3.1 Generate and Validate APR techniques

The main technique consists of the following three steps:

1. Take original program, take all the test cases

2. Modify the program (mutation or genetic program techniques)

3. Modified program is a fix if all test cases pass

JGenProg [112] is the Java implementation of GenProg [100]. The techniques use a
generate-and-validate method to produce patches using a genetic programming approach.
The search space consists of patches that are formed through combinations of removing
code, and inserting and replacing code from elsewhere in the program under repair [112].
Listing 6.1 shows an example buggy program (The endless loop on lines 5-9). The patch for
the Listing 6.1 is shown in Listing 6.2. The complete program after applying GenProg
is shown in Listing 6.3.
JKali [112] is the implementation of Kali [155] for Java. They attempt to come up
with candidate patches by removing or skipping statements. In particular, the operators
implemented in Kali are removal of statements, modification of if conditions to true and
false, and insertion of return statements [49].

1 void gcd ( int a , int b) {
2 i f ( a == 0) {
3 p r i n t f ( "%d" , b ) ;
4 }
5 while (b != 0)
6 i f ( a > b)
7 a = a − b ;
8 else
9 b = b − a ;
10 p r i n t f ( "%d" , a ) ;
11 e x i t ( 0 ) ;
12 }

Listing 6.1: Starting program

1 void gcd_2( int a , int b) {
2 p r i n t f ( "%d" , b ) ;
3 e x i t ( 0 ) ;
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4 }
5 }

Listing 6.2: Proposed fix

1 void gcd_3( int a , int b) {
2 i f ( a == 0) {
3 p r i n t f ( "%d" , b ) ;
4 e x i t ( 0 ) ; // i n s e r t e d
5 a = a − b ; // i n s e r t e d
6 }
7 while (b != 0)
8 i f ( a > b)
9 a = a − b ;
10 else
11 b = b − a ;
12 p r i n t f ( "%d" , a ) ;
13 e x i t ( 0 ) ;
14 }

Listing 6.3: Fixed program

Other techniques belong to this repair category are ACS [214], ARJA [218], Cap-
Gen [209], Cardumen [113], DeepRepair [210], Elixir [161].

6.3.2 Sematics-based APR techniques

Semantics-based APR techniques uses symbolic execution and test suites to extract
semantic constraints, and uses program synthesis to synthesize repairs that satisfy the
extracted constraints [97]. The main steps of the techniques in this category are:

• Take original buggy program and all the test cases
• Encode the program formally or explicitly (e.g., convert a program into a formula)

– behavioral analysis
– problem generation
– fix generation

• Solve the formula 1

1Solution is guarantted to solve the problem (bug), but is not guarantted to be satisfactory
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Nopol [215] is a repair tool for Java. Nopol repairs buggy conditional statements (i.e.,
if-then-else statements). In particular, the approach takes a buggy program as well as a
test suite as input and generates a patch with a conditional expression as output.
DynaMoth [50] performs a dynamic synthesis of patches for repairing conditional bugs.
Although the tool is integrated into Nopol that also targets buggy and missing if con-
ditions, DynaMoth uses the Java Debug Interfact to access the runtime context and
collects variable and method calls instead of using an SMT formula to generate a patch.

6.3.3 Metaprogramming-based APR techniques

The idea of the techniques is to tranform the program under repair with automated
code transformation, so as to obtain a metagram. Typically, the main algorithm consists
of the following steps:

1. Take original program, take all the test cases

2. Create metaprogramming description of a program

3. Run the program

4. Use runtime information and metaprogramming description to identify bugs and
generate a fix

NPEFix [38] repairs null pointer exceptions at runtime by using two strategies. The
first strategy assigns an alternative value (which can be a valid value that is stored in
another variable or a random value) for a null dereference. The second strategy skips
the execution of the null dereference, by either skipping a single statement or skipping
the complete method. All strategies are applicable for any arbitrary objects, including
instances of library classes, and instances of domain classes.

6.4 Evaluation of APR Techniques

Various evaluation studies investigate the success of APR tools on different bench-
marks. Table 6.1 shows factors that have been investigated on the success of APR tools
in generating patches. While most of the studies focus on the internal aspects of the APR
tools (e.g., representation of genetic operators, localization size, fault space size), external
factors (e.g., developer reported defect severity, number of files touched by developers in
report, time needed to wait for a patch) did not get much of attention.

110



Chapter 6 6.5. Preliminary Experiments

Table 6.1: Factors affecting Success/Unsucccess Patches

Evaluation criteria APR Studies
Fault localization techniques [49, 98, 153]
Fix space [98, 155]
Human time to repair [98]
Human repair size [98]
Defect difficulty/severity [98, 121]
Test suites [170]
Time budgets Ours [199]

Literature
Review

Project and
Tool selection

Bug repair with
time budget Plausible patches

Tentative patches Manual patch
analysis

462 accepted
patches

8782 unsuccessed
attempts

5 tools, 221
bugs of 44
programs

Figure 6.1: Experiments of different APR tools on different benchmarks constrained by
time budgets

6.5 Preliminary Experiments on APR tools constrained
by time budgets

Figure 6.1 shows the setup of our experiment. For the APR tool selection, we used the
RepairThemAll framework [49] and selected five tools for Java programs belonging to
three repair technique families: generate-and-validate, semantic-driven,metaprogramming-
based. The legend of Figure 6.3 shows the final set of APR tools.

We selected the five most popular benchmarks having both a set of buggy programs
with known locations of software bugs and a set of test cases to validate the generated
patches. For each benchmark, we randomly selected a project and extracted all its bugs.
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Table 6.2: Repair Benchmarks used in this study
Java is chosen due to its popularity in the automatic program community. For example, popular APR
tools such as GenProg or Kali have been ported to Java, and popular benchmarks such as Defects4J are
collected from Java projects. Moreover, after the interviews in Chapter 3, we observed that Java is also
one of the four most popular programming languages used by professional developers.

Benchmark Project #Bugs Language
Defects4J Chart 26 Java
Bears spring-projects-spring-data-commons 15 Java
Bugs.jar Accumulo 88 Java
IntroClassJava smallest 52 Java
QuixBugs 40 projects 40 Java

For the QuixBugs benchmark, we selected all available projects as they contain only one
bug per project. This selection resulted in 221 bugs from 44 projects (Table 6.2). This
study focuses on APR techniques designed to fix bugs in Java programs as a state-of-
the-art benchmark dataset. We selected the most popular samples that contain both a
set of buggy programs with known locations of software bugs and a corresponding set of
test cases to validate the generated patches. For each benchmark, we randomly selected
a project and extracted all the bugs affecting this project. For the QuixBugs benchmark,
we selected all the available projects as they are relatively small (e.g., the benchmark
contains only one bug per project).

To benchmark the APR tools, we give each tool exponentially longer deadlines and
count the corresponding cumulative patches. A generated patch is measured successful
if it passes all the specified test cases for the particular software program. Thus, the
anytime algorithm should provide more successful patches in proportion to the increased
amount of available time [77]:

• each tool takes as same input set of the studied programs with known bugs and the
same starting parameters for each run (i.e., the predefined seed);2

• we terminate the repair process if a given time budget is exceeded or the first
successful patch is generated;

• after each run, we double the time interval that a tool has for generating plausible
bug fixes.

2NPEFix was an exception as it does not support such an option.

112



Chapter 6 6.6. Findings

6.6 Findings

Our experiment performed 9244 repair attempts, 462 of the attempts resulted in a
plausible patch, while 8782 attempts terminated without generating a patch.

Figure 6.2 shows the fractions of the total number of patches generated by the selected
APR tools. We observe that within one minute, the tools fixed 9% of the total number
of bugs. When we doubled the time (e.g., two minutes), the number of plausible patches
increased to 13.6%. This number of patches already deviates from the expected increase
in the number of patches: if the APR tools are anytime algorithms, the expected fraction
of patches after two minutes is 18%. The difference between the expected fraction of
patches and the actually registered ones increases with time. We observe 19% of bugs
fixed after running the tools for four minutes (36% is expected) and 28% of bugs fixed
after 16 minutes (72% is expected). Hence, we observe a sub-linear increase in the fraction
of patches while the tool running time increased exponentially.

Figure 6.3 shows the fraction of patches each tool generated after a particular time
interval. We observe that Nopol fixed the biggest fraction of bugs: already after the first
minute, it generated patches for 5% of bugs. However, each consecutive increase of the
tool’s time budget reduces the number of newly generated patches: +2% after running
for the second minute, +2% after four minutes, and +1% after running for 16 minutes.
Similarly, jKali generated 2% of patches after running for one minute and then was able
only to double the number of fixes (5% of bugs) while had 16x more time.

jGenProg and NPEFix fixed a small fraction of bugs after running for one minute
(1% of total bugs). After waiting 4x time for jGenProg and 16x time for NPEFix, we
obtained more fixes. However, the number of patches increased modestly while the tools
required a substantially longer time to generate them (5x patches required 16x time).

DynaMoth demonstrated a somewhat different behavior. It produced no patches
after running for one minute then generated patches for 2% of bugs after two minutes.
The next doubling of the time interval leads to just one additional bug fix. After 16
minutes, DynaMoth patched 7% of bugs, which is the second-best result within the
evaluated tools. Even if we observe a stepped increase in the number of fixes, it still does
not correspond to the exponential growth in the amount of time required for the tool to
produce them.
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Figure 6.2: Total generated patches by all APR tools

Valid solutions are plausible patches that pass all test cases. Plausible patches are accepted by
most studies in APR evaluation [105]
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Figure 6.3: Generated patches by each individual APR tool

Valid solutions are plausible patches that pass all test cases. Plausible patches are accepted by
most studies in APR evaluation [105]
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Table 6.3: Manual Validation of the Generated Plausible Patches

Time budget Benchmark Project Bug ID Tool Correct/Incorrect
1 min QuixBugs QuixBugs DEPTH_FIRST_SEARCH jKali Incorrect
4 minutes QuixBugs QuixBugs QuixSort Nopol Incorrect
16 minutes Defects4J Chart 5 Nopol Correct
16 minutes QuixBugs QuixBugs FIND_IN_SORTED Nopol Correct
16 minutes QuixBugs QuixBugs FIND_IN_SORTED Nopol Correct

6.7 Manual Validation of generated patches

In this section, we examine the success and failed attempts as well as the correctness
of the plausible patches.

6.7.1 Reason of Failed Repair Attempts

Giving a minute for the tool jGenProg to fix the bug in Chart 5 only allows it to
generate the first variant. The execution trace is shown below.

---- Gzoltar fault localization
---- Creating spoon model
---- Creating program variant #1, [Variant id: 1, #gens: 19]

By giving jGenProg a very small time budget, it was only able to locate the fault
and create a variant. More time is needed to verify the variant against the test cases and
explore more variants.

6.7.2 Success repair attempts

We randomly select some plausible patches and compare with the human patches.
Table 6.3 shows the number of generated patches that are correct and incorrect by our
assessment.

1 // source/org/jfree/data/xy/XYSeries.java

2 public XYDataItem addOrUpdate(Number x, Number y) {

3 if (x == null) {

4 throw new IllegalArgumentException("Null ’x’ argument.");

5 }

6 // if we get to here, we know that duplicate X values are not permitted

7 XYDataItem overwritten = null;

8 int index = indexOf(x);
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9 if (index >= 0 && !this.allowDuplicateXValues) {

10 XYDataItem existing = (XYDataItem) this.data.get(index);

11 try {

12 overwritten = (XYDataItem) existing.clone();

13 }

14 catch (CloneNotSupportedException e) {

15 throw new SeriesException("Couldn’t clone XYDataItem!");

16 }

17 existing.setY(y);

18 }

19 else {

20 // if the series is sorted, the negative index is a result from

21 // Collections.binarySearch() and tells us where to insert the

22 // new item...otherwise it will be just -1 and we should just

23 // append the value to the list...

24 if (this.autoSort) {

25 - this.data.add( -index - 1, new XYDataItem(x,y) );

26 + this.data.add(new org.jfree.data.xy.XYDataItem(x, y));

27 else {

28 this.data.add(new XYDataItem(x, y));

29 }

30 // check if this addition will exceed the maximum item count...

31 if (getItemCount() > this.maximumItemCount) {

32 this.data.remove(0);

33 }

34 }

35 fireSeriesChanged();

36 return overwritten;

37 }

Listing 6.4: Patch generated for Chart-5 by running JGenProg for four minutues

1 // source/org/jfree/data/xy/XYSeries.java

2 public XYDataItem addOrUpdate(Number x, Number y) {

3 if (x == null) {

4 throw new IllegalArgumentException("Null ’x’ argument.");

5 }

6 + if (this.allowDuplicateXValues) {
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7 + add(x, y);

8 + return null;

9 + }

10

11 // if we get to here, we know that duplicate X values are not permitted

12 XYDataItem overwritten = null;

13 int index = indexOf(x);

14 - if (index >= 0 && !this.allowDuplicateXValues ) {

15 + if (index >= 0) {

16 XYDataItem existing = (XYDataItem) this.data.get(index);

17 try {

18 overwritten = (XYDataItem) existing.clone();

19 }

20 catch (CloneNotSupportedException e) {

21 throw new SeriesException("Couldn’t clone XYDataItem!");

22 }

23 existing.setY(y);

24 }

25 else {

26 // if the series is sorted, the negative index is a result from

27 // Collections.binarySearch() and tells us where to insert the

28 // new item...otherwise it will be just -1 and we should just

29 // append the value to the list...

30 if (this.autoSort) {

31 this.data.add(-index - 1, new XYDataItem(x,y));}

32 else {

33 this.data.add(new XYDataItem(x, y));

34 }

35 // check if this addition will exceed the maximum item count...

36 if (getItemCount() > this.maximumItemCount) {

37 this.data.remove(0);

38 }

39 }

40 fireSeriesChanged();

41 return overwritten;

42 }

Listing 6.5: Human Patch generated for a bug in Chart-5 program
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Listing 7.4 shows a patch generated by jGenProg for the bug ID 5 of the Chart project
with a timeout of four minutes. The bug is caused by not checking duplicate values before
adding, as shown in Listing 7.5. jGenProg, however, fixed the bug by creating a new
instance of the class representing the pair of values, which is clearly not correct.

6.8 Threats to Validity

We only measure the number of plausible patches regarding increasing number of time
budgets. However, the number of patches generated along with increasing time budgets
should be highly relevant to multiple factors, including patch generation strategies, patch
validation strategies, and implementations of the APR tools.

We only consider five APR tools in our study. The extension to other APR tools seems
straightforward (e.g., tools already provided by RepairThemAll framework jMutRe-
pair). However, we only considered a small fraction of bugs in the benchmarks. More
bugs would need to be considered for a more comprehensive analysis.

We limit our experiment and analysis to Java projects. The main reason is that Java
is a popular language and is most focused on by the APR community.

We fit the seed parameter to ensure the reproduciblity, however the performance of
some APR tools (e.g., JGenProg) can be affected by the predefined seed parameter.

We measure APR tools’ performance with anytime algorithm, however APR tools
could be considered as other algorithms.

We only run a single replication for each run because it is very time-consuming to run
multiple experiment replications. For example, running 11 repair tools on 2141 bugs took
almost a year of continuous execution on the big cluster of machine [49].

6.9 Conclusions

We evaluated the automated software repair tools with different time budgets. We
found that by giving exponentially more time, the number of patches only increases lin-
early or not at all. If no quick fix is generated (within the first four minutes), one is
unlikely to be generated.

Our code and replication data are available on Github at https://github.com/
assuremoss/Automated-Program-Repair/tree/main/Anytime-Algorithm-2021.
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7
What is Next?

“Put yourself, and your work, out there every day, and you’ll start meeting
some amazing people.”

– Bobby Solomon

This thesis investigated different stages and actors of the software supply chain from the
security point of review holistic view of software supply chain security. To do so, the thesis
used both qualitative and quantitative methods to provide a set of actionable implications
and techniques that developers and maintainers can use in different stages of the software
supply chain. This thesis presents a suite of solutions that might support software practi-
tioners selecting a suitable dependency, understanding the dependency, and fixing bugs in the
dependency.

Several nuances are still unaddressed by our study in Chapter 3, starting from broad-
ening our studies to more countries to correlating results with different types of industries
(e.g., financial companies, critical infrastructures, or social media - as we cover all of them
but with too few samples each). The most challenging future work for the community at
large is developing the dependencies and security analysis tools our developers require.
In addition, an interesting future work would be to seek more interviews with developers
involved in developing FOSS projects and study developers from different development
communities who share different views on software dependencies.

Chapter 4 provides an approach to link the package and its corresponding source code
repository and provide a set of metrics reported by developers in the qualitative studies
in Chapter 3. Future directions for the community are to understand how the activity of
a package (e.g., number of releases, time to release) and the information about security
fixes might affect the popularity of a package.
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LastPyMile presented in Chapter 5 provides a starting point to investigate discrep-
ancies in the code hosted on the source code repository and the code hosted within the
package repository. Future research directions might be to analyze configuration files
and provide more precise analysis on the discrepancies (e.g., source code dynamic analy-
sis). Besides, attackers could hide malicious code in many other forms, such as webpages
(HTML with embedded or external JavaScript) or configuration files (requirements.txt
with a malicious dependency). We notice a high number of dependency declaration files
requirements.txt, which contain the list of dependencies to be installed automatically with
pip install. This could be a potential vector for adversaries to add malicious injections
worth further investigations. As for the next steps, the specific approaches that work for
the current package managers, such as PyPI, NPM, and RubyGems, need to be devel-
oped. In particular, the first step would be to develop an automatic approach to identify
the source code repository of the uploaded software package. Then a package repository
could leverage the git log or the LastPyMile approaches to identify the possible differ-
ences between the source code repository and the uploaded package. Finally, the most
challenging step would be to design a fast, reliable, and precise way to check the identified
differences for the presence of malicious injections.

Chapter 6 investigate the practicality aspects of APR tools (e.g., a function of time
for the number of plausible patches) and explore the changes in APR tools after a while.
Future directions might be to try more advanced APR techniques to determine the best
one that meets the developers’ needs. Future experiments will be scheduled on a more
extensive cluster of machines to reduce the potential bias of a single misleading run. In
addition, more researches might be needed to evaluate the applicability and efficacy of
APR techniques to fix vulnerabilities. To do so, researchers should devote more effort to
curating a new vulnerability dataset for program repairs.
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Appendix

8.1 CRediT authorship contribution statement

This section details the contribution of Ly Vu Duc to the main25 published works
followed by the CRediT authorship contribution statement by Elsevier [52].

• A qualitative study of dependency management and its security implica-
tions [136]: the identification of research questions, conducted and transcribed the
interviews, coded the interviews and the code analysis and contributed to writing
the paper.

• py2src: Automatic Identification of Source Code Repositories and Fac-
tors for Selecting New PyPI Packages [198]: the identification of research
questions, developed the tool, analyzed the data, manual validation of the findings,
and contributed to writing the paper.

• LastPyMile: identifying the discrepancy between sources and packages [202]:
the identiffication of research questions developed the approach, analyzed the data,
and contributed to writing the paper.

• Please hold on: more time = more patches? Automated program repair
as anytime algorithms [199]: the identification of research questions, collected
benchmarks and tools, analyzed the results, and contributed to writing the paper.

8.2 Ethical Issues

The procedure complies with UNITN guidelines for human studies that do not involve
processing of personal data and observation of participants.
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ai sensi dell’art. 3 delle Regole deontologiche per trattamenti a fini statistici
o di ricerca scientifica pubblicate ai sensi dell’art. 20, comma 4, del d. lgs. 10
agosto 2018, n. 101 – 19 dicembre 2018

8.2.1 Main Ethical Issues

Table 8.1: Main Ethical Issues
Ethical issue YES NO Comment

1 Will data be collected or analyzed in
the course of the project?
Data include interview and survey re-
sponses, observations, registrations, so-
cial media, content, and visual images

XX Data about developers’ perceptions of
software dependencies and the effect
of security concerns on their decisions
through an semi-structure interviews.

2 Is the data collected in the public or in
the private domain?

2.1 Public domain data:
includes observations made during a
public event, observations of public fig-
ures, or data extracted from public on-
line sources (including publicly accessi-
ble social media data)

XX

2.2 Private domain data:
includes observations made using (on-
line) questionnaires, experiments, inter-
views, and focus groups as well as data
extracted from private digital sources

XX Online and in-person intereviews where
participants are asked about their
decision-making strategies for selecting,
managing, and updating software de-
pendencies.

3 Do the data you use contain personal
or sensitive information?

3.1 Personal data:
It includes information that may iden-
tify a specific person, e.g. name, ad-
dress, phone number, IP address, bank
account number, social security number

XX
Temporary personal data (name and
email) will be collected to identify the
participants with the online system but
this data will not be used for the re-
search and replaced with anonymous
identifiers.

3.2 Sensitive data:
It includes information such as race,
religion, sexual orientation, criminal
record, and political preferencer

XX

4.1 Will the research project involve merg-
ing multiple data sets? XX
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5.1 Will participants in the research project
be asked for informed consent?

XX At the beginning of the experiment they
will be asked to consent to the use of
their technical answer for research pur-
poses

6.1 Does the planned research pose poten-
tial risks to the participants during or
after the research? Risks may include
physical and psychological harm or dis-
comfort.

XX
Risk may include normal fatigue when
doing a 30 minutes interview session.

6.2 Does the research pose potential risks
to a population or group from which
participants are drawn?
Risks may include stigmatization, or
reputational or economical damage.

XX

6.3 Are participants individuals who are
vulnerable? Participants may be vul-
nerable when they depend on others for
assistance in daily life, or when they ex-
perience threats or physical danger.

XX

6.4 Will participants be exposed to mate-
rial, social, or psychological recruitment
incentives that are stronger than usual?
E.g., are payments made that are
higher than the minimum wage? Are
individuals exposed to strong social or
psychological pressure to participate?

XX

6.5 Will participants be exposed to re-
search stimuli (e.g., pictures, video,
text) that may be distressing, offensive,
or age-inappropriate? Research stimuli
may be considered distressing or offen-
sive if they are stronger than what par-
ticipants would normally be exposed to
in daily life.

XX

7.1 Does the research pose potential risks
to the researchers?
Risks may include physical and psycho-
logical harm or discomfort.

XX
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8.1 Will participants be deceived in the re-
search?
Deception means that the protocol de-
liberately give participants information
that is false.

XX

8.2 If participants are deceived will they be
debriefed afterwards?

XX

9 Is anonymity or confidentiality to par-
ticipants guaranteed?

9.1 Anonymity:
The identity of participants will remain
unknown, also to the researchers.

XX
The researcher could know the identity
of the participants to send them the
transcripts as well as complete findings
for confirmation.

9.2 Confidentiality:
Researchers will know the identity of
participants, but it will be unknown to
others.

XX All personal data will be replaced with
anonymous identifiers.

10.1 Will research and data collection also
possible outside of the country?

XX The participants will be debriefed on
where the vulnerability is present.

10.2 Outside the country but within Euro-
pean Union XX

10.3 Outside the European Union XX
11 There is the possibility of misusing the

research instruments or the research re-
sults. This includes providing knowl-
edge, materials and technologies that
could be adapted for criminal/terrorist
activities

11.1 Misuse by participants.
XX

11.2 Misuse by researchers.
XX

11.3 Misuse by third parties.
XX

12.1 Is there the possibilities to have inciden-
tal findings that impact participants or
third parties

XX

12.2 If there are incidental findings is there
a procedure to disclose them to the in-
terested parties

XX
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8.2.2 Main Ethical Mitigations

• The research collects temporary personal data (name and email) to identify the
participants with the online system but this data will not be used for the research
and replaced with anonymous identifiers

• 5.1: Participants in the research project will be asked for informed consent to the
use of their technical answer for research purposes

• 6.1: The potential risks to the participants during the research may include normal
fatigue when doing a 2 hours digital task

• 6.4: Participants are exposed to recruitment incentives that are not stronger than
usual since participation is included in the course but the use of research data is
entirely voluntary and does not affect the grading of the course.

• 8.1: Participants will not be deceived in the research.

• 8.2: At the end of the task participants will be debriefed on where the vulnerability
is present.

• 9: Anonymity or confidentiality to participants is guaranteed. The researcher could
know the identity of the participants if they correlate the authentication system
with the data submitted and do not delete such information for the preparation of
the research data. All personal data will be replaced with anonymous identifiers

• 10: Research and data collection also possible outside of the country as individual
participants might come from industry partners around the world.

• 11: There is no possibility of misusing the research instruments or the research
results.

• 11.2: Misuse by researchers of the results of the research is also impossible.

• 12.1: There are limited possibilities to have incidental findings that impact partici-
pants or third parties.

8.2.3 Data Collection and Protection

The research will involve the collection of information from the participants. This is
achieved through the interviews.
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The proposed research involves an initial collection and processing of personal data
which will be then anonymized.

Specifically, personal data such as :

1. partificipant’s name and email will be used to communicate the participants to share
the findings and ask for feedback.

2. participants will then be assigned a pseaudonym reference code, which will be used
instead of their personal ID for storing, reporting, and disseminating results.

Background and results of the expertise in Computer Science related topics will be
collected during the experiments mentioned above that will only be used in an anonymous
form.

Upon request, the participants will know where their personal data will be stored.
The information related to the the personal data storage duration is included on the
consent form to be signed by the participants. They will be informed that these data
will not be used for commercial purposes. The collection of authentication information
for students will happen through a University of Trento provided system for teaching and
will follow the privacy protection rules of that system. Data resulting from the exercise
will be stored and handled according to the provisions of the EU General Data Protection
Regulation. Electronic records will be stored on a computer with password-protected
access and backed up on media with password-protected access.

8.3 Appendix – Failed attempt of the interviewee se-
lection

Interviewee selection – failed attempt. First, to invite developers for the interviews,
we decided to reach developers of the most popular open-source Java projects. For this
purpose, we created a search on Github by the keyword “Java” and selected the top 20
most starred projects (Table 8.2). Then we used our tool for the dependency study (See
§5.3 for details) to generate dependency analysis reports for those projects. We sent these
reports to the main contributors (or owners) of the selected projects and asked them to
provide their feedback on the reports as well as to dedicate some time for an interview.
Unfortunately, this activity did not provide us with the sufficient number of interviewees,
because there was only one response.

In agreement with B.Adams [6], the most likely reason for the fact, that developers of
the most popular Github projects ignored us, is that they may be overloaded by the various
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Table 8.2: Top 20 most starred projects from Github

Github Repository URL Version Project Name
https://github.com/square/retrofit parent-2.4.0 retrofit
https://github.com/square/okhttp parent-3.11.0 okhttp
https://github.com/google/guava released-all-futures Google Guava
https://github.com/apache/incubator-dubbo dubbo-2.6.4 Apache Dubbo
https://github.com/zxing/zxing BS-4.7.8 ZXing
https://github.com/kohsuke/jenkins 1.386 Jenkins
https://github.com/raver119/deeplearning4j latest_release Deeplearning4j
https://github.com/eclipse/vert.x 3.5.4 Vert.x
https://github.com/prestodb/presto 0.212 Presto
https://github.com/perwendel/spark 2.7.2 Spark
https://github.com/brettwooldridge/HikariCP HikariCP-3.2.0 HikariCP
https://github.com/junit-team/junit4 JUnit 4.12 Junit4
https://github.com/xetorthio/jedis jedis-2.9.0 Jedis
https://github.com/code4craft/webmagic WebMagic-0.7.3 WebMagic
https://github.com/google/auto auto-value-1.6.3rc1 Google Auto
https://github.com/dropwizard/dropwizard v2.0.0-rc0 Dropwizard
https://github.com/emeroad/pinpoint 1.6.2 Pinpoint
https://github.com/redisson/redisson redisson-3.8.2 Redisson
https://github.com/codecentric/spring-boot-admin 2.0.3 Spring Boot Admin
https://github.com/swagger-api/swagger-core v2.0.5 Swagger Core library

research studies. I.e., the developer selection approach we followed is very tempting for
researchers. Hence, developers of popular research projects may receive many emails with
different requests for participation in various scientific studies. So, they treat such kind
of requests as spam and ignore it. In our case the request for the study also contained
an attachment. And in the light of constantly increasing threat of ransomware, such
kind of emails looked very suspicious. So, we had to select a different strategy for hiring
interviewees.

8.4 Appendix – Codes Distribution

Figure 8.1 shows the frequency distribution (number of occurrences) of the codes
attributed to the fragment of interviews. Developers are worried about the possible issues
(including security bugs) that dependencies may introduce into their projects: dislike
(114 occurrences), security (106 occurrences), and bugs (84 occurrences) are within the
topmost mentioned codes. At the same time, the relatively low number of occurrences
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Figure 8.1: Code frequency by code groups

of codes such as direct deps (8 occurrences) and transitive deps (16 occurrences) in an
interview about dependencies suggests that developers may not consider all details of the
dependency management process to be really problematic (like had 75 occurrences). After
all, this is the whole advantage of using dependencies as black boxes:

If there’s something we really know to be broken, we fix it. Otherwise, it’s

kind of left to itself. (#1)

The preliminary analysis also suggests that developers prefer to use dependencies as
they are (i.e., adopt new ones or update them) rather than to go deeper into details
and change the source code: all interviewed developers discussed management (149 oc-
currences), while only 15 out of 25 developers touched the maintenance topic (24 occur-
rences).

Then we analyze the codes that are mentioned together. For this purpose, we have
extracted the co-occurrence table of the interview codes [90]: each column and row of the
table corresponds to an interview code, while each cell contains the number of code co-
occurrences. To identify the cells with a significantly high number of co-occurrences, we
have calculated the mean and standard deviation for the code co-occurrences (µ = 8.27,
σ = 11.62) in the table and underlined the values in cells, where the number exceeds µ by
at least the value of σ (i.e. 19.89). To reduce the noise, we will not report the columns
where cell values do not exceed µ.
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8.5 Interview transcript example

a. How do you deal with software dependencies in your projects?
Usually, when I deal with software dependencies, I rely on some
tools, for example, Maven, Gradle for Java. Or pip for Python.
Some dependencies, that you introduce, which can be, let’s say,
not compliance with other libraries about some reason maybe. Maybe
one dependency has a dependency on another library, but different
versions, which can be tricky. I think so. Let’s say, I have also an
issue, while external dependency for.. I think, it was Json, no xml
parser in Java. And this library created memory leaks in context at
the time. And that was very bag experience with external libraries.
Because I needed to take some memory snapshot to understand what was
the leak. And I understood, that the leak was caused by an external
library. So not by the code, that we were writing.

b. And how did you cope with that bug? What did you do?
Simply we used another library, which more or less did the same thing.
Now I am thinking, that it wasn’t an xml parser, it was something to
, an utility to expose REST services in Java. And we used another
tool. We basically changed library. And that, of course, caused us
to rewrite some piece of software. At least we solved this memory
leak problem in Tomcat.

c. Ok, I see. So you basically substituted this library?
Exactly. A solution maybe to make an issue to a library and wait
for a fix, but at that time we decided to change the library. Also
because we changed the library and we wrote better some piece of
software. We took the moment to do it.

d. Yes, sure. Fair enough. There was an alternative. That’s good. I
see. I wanted to understand better on what you’re telling me. Can
you tell me a bit about your background? I nderstand, that you’re a
Java developer. How much experience do you have?
I was working basically five years in .Net, and then three years in
Java plus university projects if you can count them. They were also
in Java. And then also one year and a half in Python. There was
a JavaScript framework for web development. Which in the case was
NodeJS. But, let’s say, in that case we used npm, so node package
manager to manage the libraries in JavaScript.
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e. And currently you are working in a company, right?

Yes, I recently changed again. Yesterday I started at the new
company. SO here the recent project, that I am involved in, again
Java. I came back to Java.

f. And in the previous job?

In the previous job I was working with Python and I was working with
Django. So, the backend. And at least vJS at some time.

g. I see. And what was the scope of the company? I mean, what kind of
projects were you working on?

This is a big corporate, wanted to implement a certain solution. They
produce plastic for automatic surface. And it has several clients all
over the world. China, South America, Europe, Nothern America. And
they wanted to build a system to make the Industry 4.0. Basically,
so it is still a big project. The development of a web application
to be used by all the employees of the company, which allows to read
data from sensors installed on the machines through several protocols,
for example, PROTOCOL1. To read SOME data. And then to also read
data from other sources. For example, some ERP system. And then a
lot of features, that are still under development to digitalize the
production sector and standardize the way they use the system all over
the world. It’s very big activity to summarize it in several words.
I hope, I was enough clear.

h. Yeah, yeah. I understand something. In broad perspective. Ok, and
how old was the project, that you were working on?

This project, I mean, in the last company was.. I mean, we started it
from scratch. Then I had other experiences before, working on some,
let’s say, established software. And so in that case we had a lot
of dependencies. And introduced those dependencies, I think, in our
pipeline or development environment.

i. Ok, I see. in both projects, that you are talking about. They were
Python projects, right?
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Python project was in the last company, where I was working for one
and a half years. Before I was working in another company, and there
I was developing in Java. There I was working on both old piece of
software without any kind of, unfortunately, a dependency management.
At the beginning. Then we introduced Maven to fix the jar we were
facing, let’s say. It works on my machine, then I had a chance to
use Gradle. But for those projects I used Gradle as a very beginning
level. So the depependency were controlled by those tools.

j. Ok, and so when you implemented this switch to Maven, when you
introduced Maven to this project.. How did you select the
dependencies, that you want to include?

Well it was complicated. Let’s say, we had lib folder with a lot
of dependencies inside. The guy, who implemented the software
didn’t.. They had no idea on how to organise them better. And then
basically we started from scratch to compile the software and added
dependencies one by one. It was a long process. And then we faced
also some problems of these versions of required libraries. And
then we also had some problems at runtime. You know, in pom files
there are explicit dependencies to other jar files. So sometimes
it also depends on the quality of the dependency. Dependency pom
file. Sometimes they say compile exception, because the dependency
tree was not satisfied. And it was a painful process. But it was
necessary to introduce a new development to the field. And it was a
mess with it. And then without this technology you cannot think about
any improvements. You know, like continuous deployment or use some
automatic tools online to build and deploy applications.

k. Yeah, of course. I see. And so. Ok, when you.. Did you also face
sometime the situation, when you have to select the new dependency for
your project? Like to introduce some new functionality?

Yes, I did. This especially happens with the project I started
by myself. Of course, I needed some extra features. And I used
dependencies for that. And it actually very convenient to take
external dependencies.

l. Ok, but how do you actually select them? So, what do you consider
during that selection?
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Well, I usually, check if they are reliable by looking at Github sites
and numbers of.. I am talking only about open source dependencies.
I check if they are reliable, I look at the Github stars, number of
commits, contributors. I see if the project is active. And so I
understand, that this is a dependency I can introduce, because a lot
of people is using it. And it is still maintainable. It is stable.
Then in other cases you can buy some external library. But it was
really bad situation. And I was basically just asking for feedback of
other people, who were using the same library. You can read reviews
online. If there is a customer support also. Of course, when you
have paid solution, you have also another kind of support.

m. I see. In case you had to select this paid library.. Why did
you have to go for it? Why did you decide to select the private,
commercial library and not the open source?
Especially, when you work for a Microsoft environment for .Net
applications, there are no a lot of free alternatives for enterprise
applications. For example, windows form applications for, let’s
say rapid development. You want to speed up the development, so
you basically buy these libraries, because there was no open source
solutions in that case. For example, to develop user interfaces in
windows form, I used the vectors. And the library, which was build
on top of windows form, that also they have libraries for also web
development and other software stuff. And there, of course, you pay
quite a lot. But then you have a lot of features already out of the
box, functionalities, which is actually 99% what customer wants. So
in that case, let’s say. Since you pay, these libraries are very
reliable. Usually there is no problem of integration or bugs, or
malicious software.

n. I see. But still, there may be some new bugs discovered. Or some new
vulnerabilities discovered?
Vulnerabilities - no. But bugs - yes. Sometimes you find some bugs
also in this case. And there is a support, that you submit these
issues. And if you pay, they answer you after it. Then it depends
if you are... Because we are working for a customer and he had, he
bought the golden support. And with golden support they also release
patches for you. And they introduce the patch in the next version, so
for other people. So this is the other type of contact.
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o. Ok, I mean, that’s interesting. This patch, I assume, that you need
to just basically apply for your dependency, without update to a new
version. Right?

Yes.

p. And doesn’t break the build of the project?

Usually it’s a minor release, so it’s not breaking anything. Then, of
course, when there are major releases. The risk you break something,
which also can be high.

q. I see. Did you actually face the updates of the library? Did you
have to updates the libraries in your projects?

Yes. Let’s say. It depends on the policy of the company. Some says,
do not touch anything unless it stops working. But then you, maybe
if you need to update some library and you move some version 1.0 to
3.5, because, let’s say, you decide or your CTO in three years do not
update anything. But then it becomes a mess. Because skipping a lot
of versions can really break a lot of stuff. In another company they
instead have this policy to update the main libraries very often. And
that of course any time when the library was updated, you should do a
lot of tests.

r. Ok, but do you see any correlation with the policy of the company and
programming language that they use?

Well, it is. Usually I saw Microsoft environment, let’s say, in
corporate environments of big companies, big corporates, that can
afford paying licenses. And another companies that use Java and other
open source technologies are much smaller. But about the policies
about updating or not updating dependencies - no. I cannot say
anything, that there is a correlation.

s. In this case do companies prefer to update libraries or they prefer
just to keep them?
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It depends on the company. How many developers you have, how money
you have on the project. Because, of course, this updating process
is also time consuming. Apparently time consuming, because it take
resources from developing new features, solving new bugs. But then,
let’s say, in long term, I think, it saves a lot of time, because ok,
one day you will need to update all libraries, I think. Because, you
know, some bugs, some vulnerabilities.. I don’t know. It can be a
lot of stuff. It really depends on how long the company exists, how
experience the managers are.

t. I see. This is really interesting what actually drives the companies
to update software dependencies. For example, in your experience, how
often did you update dependencies? And when did you decide to update
them?

Let’s say, in.. When I was working for .Net applications. At least
we updated the main dependencies once per year. Because these
libraries received major updates once per year. So we basically
updated these. To always be align with basic features. But it was
a more structured company and we had people to do it. And also,
let’s say, there was no issue not to do it. Then, of course, if
you work for a smaller company. Or maybe if you are alone managing
the project, then you basically update when you need to. Or several
factors can drive this. For example, you need to.. There is a bug
or there are new features, that the new version offers. Or you need
to change the version of Java, because the version you are using needs
updating. Then you understand, that your all dependencies need to
be updated also. Let’s say, I think in a well-structured software
company, they should plan the updates frequently. If you want to
maintain your products. If you want to include new features. But
then, of course, it depends on different cases.

u. And what about the security side? So, did you ever faced the security
of the dependencies?

About security I do not have a lot of examples. I know, that, for
example, for Java and also other environments, they. At some point
they stop to release patches, security patches. It depends also how
much you.. Is your business to make application secure.
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v. So in your experience, do the companies looked somehow on the security
sides of their dependencies? Did they check their dependencies on the
presence of security vulnerabilities?

No, in this case, I can say. Let’s say, in this case I saw the
dependencies are used around, where, let’s say, mostly trustworthy,
because they are very used dependencies. Because they are also,
dependencies are coming from enterprises. So you kind of trust
them. It’s not just a random dll or random jar you find. So, let’s
say, that we are using, we search for reliable sources. Also, you
sometimes want to look at the code to understand if it actually
introduces some security vulnerabilities.

w. Ok, I see, it’s fair enough. If the publisher development company
is trustable, if it is big enough. Like Microsoft, then you kind of
trust them And they do not ship bad code.

Yes yes yes. Also if you use some dependencies from open source, from
Github with a lot of contributors, a lot of stars, you can trust. I
don’t know if anyone is going to check anything in such libraries. A
lot of people use them and they can just do whatever. But there is
someone in the world, some nerd ones, that take look at the code, at
every line of code and do this work for me.

x. Yes, sure. That’s the idea behind the dependencies. So kind of
outsource some part of your work to somebody else.

Aha, yeah.

y. I have just last question basically. You already mentioned, that
there was a time, when you had to switch to another library, because
there was a problem, there was a bug. So basically there was no
fix. Can you comment about this situation? So, if you, also from
the perspective of different companies where you worked. So, if you
face this situation, when there is no fix, what would be your reaction
if there is no new version with the fix of the bug or security
vulnerability?
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In this case if it was an open source library, I don’t know, we could
complain to the maintainer of the library. If there is a license
somewhere, if there is a line saying: I’m not responsible for any
bugs. That policy of the company was, that when they understood,
that the memory leak was caused by this library in our , let’s say,
in our software configuration. We checked where the library was used
and we understood if it was very painful to change it or not. And we
understood, that it wasn’t that painful and we took also the chance
to rewrite some old class in a better way. Then we didn’t experience,
the memory leak, let’s say, any more.

8.6 Appendix – Complete co-occurrence table

Figure 8.2 shows the complete co-occurence table for the Section 3.3.

8.7 Appendix – Per language analysis

Figure 8.4 shows the distribution of codes by languages.

8.8 Appendix – Typosquatting and Combosquatting At-
tacks in PyPI
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Figure 8.2: Full Co-occurence table. Available online on Zenodo at [137]
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Figure 8.3: Developer operations for languages. Available online on Zenodo at [137]

Figure 8.4: Developer attitutes for languages. Available online on Zenodo at [137]
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Table 8.3: Malicious PyPI packages in our sample.
Levenshtein distance (d)

# Time Appear Malicious Package Legitimate Package Names change d=1 d=2
1 2016-03-02 virtualnv virtualenv Delete ‘e’ X

2 2016-03-03 mumpy numpy Substitute ‘n’ by ‘m’ X

3 2017-05-01 crypt crypto Delete ‘o’ X

4 2017-06-02 django-server django-server-guardian-api Delete “-guardian-api”
5 2017-06-02 pwd pwdhash.py Delete ‘hash.py’
6 2017-06-02 setuptool setuptools Delete ‘s’ X

7 2017-06-02 setup-tools setuptools Insert ‘-’ X

8 2017-06-02 telnet telnetsrvlib Delete ‘srvlib’
9 2017-06-02 urlib3 urllib3 Delete ‘l’ X

10 2017-06-02 urllib urllib3 Delete ‘3’ X

11 2017-06-03 acqusition acquisition Delete ‘i’ X

12 2017-06-03 apidev-coop apidev-coop_cms Delete ‘_cms’
13 2017-06-04 bzip bz2file Substitute ‘2file’ by ‘ip’
14 2017-11-23 djanga django Substitute ‘a’ by ‘o’ X

15 2017-11-24 easyinstall easy_install Delete ‘_’ X

16 2017-12-05 colourama colorama Delete ‘u’ X

17 2018-04-25 openvc opencv-python Swap ‘c’ and ‘v’ & Delete “-python”
18 2018-05-02 mateplotlib matplotlib Insert ‘e’ X

19 2018-05-02 numipy numpy Insert ‘i’ X

20 2018-05-02 python-mysql MySQL-python Swap ‘python’ and ‘mysql’ X

21 2018-05-03 libcurl pycurl Substitute ‘py’ by ‘lib’
22 2018-05-03 libhtml5 html5lib Swap ‘html5’ and ‘lib’
23 2018-05-03 pysprak pyspark Swap ‘a’ and ‘r’ X

24 2018-05-03 PyYMAL pyyaml Swap ‘a’ and ‘m’ X

25 2018-05-10 nmap-python python-nmap Swap ‘nmap’ and ‘python’ X

26 2018-05-10 python-mongo pymongodb Delete ‘db’ & Substitute ‘py’ by ‘python-’
27 2018-05-10 python-openssl openssl-python Swap “openssl” and “python” X

28 2018-09-17 pytz3-dev pytz Insert ‘3-dev’
29 2018-10-29 python-sqlite pysqlite Substitute ‘py’ by ‘python-’
30 2018-10-30 python-ftp pyftpdlib Delete ‘dlib’ & Substitute ‘py’ by ‘python-’
31 2018-10-30 python-mysqldb MySQL-python Swap ‘python’ and ‘mysql’ & Insert ‘db’
32 2018-10-30 smb pysmb Delete ‘py’ X

33 2018-10-31 pythonkafka kafka-python Swap ‘kafka’ and ‘python’ & Delete ‘-’
34 2019-12-01 jeIlyfish jellyfish Substitute ‘l’ by ‘I’ X

35 2019-12-01 python3-dateutil python-dateutil Insert ‘3’ X

36 2018-04-25 ssh-decorate ssh-decorate Hijacked Package
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